Corrections and Additions for the $1^{\text {st }}$ Impression

Date: 16.9.2023
Author/Title: Forrest: Organic Electronics
ISBN: 9780198529729

	Page number	Line number	Incorrect content	Correction/instructions on how to correct
1	22	Column 2, para. 3 , line 17	tridentate molecule (have 3 ligands, or "teeth")	bidentate molecule (have 2 bonds, or "teeth" to each ligand)
2	33	Table 2.1	Monoclinic	Change labels above both rectangles to " $\alpha, \gamma=90^{\circ}$ "
3	35	Column 2, $1^{\text {st }}$ paragraph, last line	"a•(b×c)"	" $\overline{\mathbf{a}} \cdot(\overline{\mathbf{b}} \times \overline{\mathbf{c}})$ "
4	42	Fig. 2.9, vertical axis label	"Energy/ hcR"	"Energy/ hcR ${ }_{\infty}$ "
5	43	Column 2, $2^{\text {nd }}$ line from bottom.	$"-\Delta \Phi(\mathbf{r}) "$	$"-\nabla \Phi(\mathbf{r})$ "
6	45	Column 1, $1^{\text {st }}$ full para., line 7	"a full electron charge"	"0.1q"
7	76	Figure 3.1 B	Diagram at far right shows " $\mathrm{S}=0$ "	Change to " $\mathrm{S}=1$ "
8	79	$\begin{array}{\|l\|} \hline \text { Column 2, Eq. } \\ 3.18 \\ \hline \end{array}$	"me"	" m_{N} "

9	82	Column 2, line 3	"3.46"	"3.26"
10	85	Figure 3.11 caption		At end of caption, insert: "After Gribov \& Orville-Thomas, 1988"
11	105	Col. 1, starting 2 lines above Eq. 3.98	"will decrease to $I(d)$ after travelling a distance, x (cf Eq. 3.94): $I(d)=I(0) e^{-\alpha(v) x}$	"will decrease to $I(x)$ after travelling a distance, x (cf Eq. 3.94): $I(x)=I(0) e^{-\alpha(v) x}$,
12	109	Column 2, line 10 from bottom	"thermally assisted"	"thermally activated (or assisted)"
13	156	Col. 2, Eq. 3.255	$\frac{L_{D}}{\tau_{r}}{ }^{2} \frac{\partial^{2} n(x)}{\partial x^{2}}-\frac{n(x)}{\tau_{r}}+\frac{I_{0} \alpha(\lambda)}{\cos \theta} \exp \left(-\frac{\alpha(\lambda) x}{\cos \theta}\right)=0$	$\frac{L_{D}}{\tau_{D}} \frac{\partial^{2} n(x)}{\partial x^{2}}-\frac{n(x)}{\tau_{D}}+\frac{I_{0} \alpha(\lambda)}{\cos \theta} \exp \left(-\frac{\alpha(\lambda) x}{\cos \theta}\right)=0$
14	165	Column 1, Prob. 13(b), line 4-6	"Note that the absorption peaks at $<400 \mathrm{~nm}$ are in a different electronic manifold than at $>450 \mathrm{~nm}$."	Delete sentence
15	165	Column 1, Prob. 13(c), line 2		Change "3.2" to "3.2 and m*=m"
16	198	In the line following Eq. 105		Insert "where C is a density-dependent fitting parameter".
17	218	Col. 2, paragraph 1, line 2	"Fig. 4.59a"	"Fig. 4.58a"
18	225	Eq. 4.175	There are two instances where A^{\prime} is found.	Replace with A (i.e remove ')
19	249	Col. 1, first line after Eq. 4.277	" $W=x_{n}+x_{p}{ }^{\prime \prime}$	" $W=x_{p}-x_{n} "$
20	256	Col. 2, line 1	"Fig. 4.103"	"Fig. 4.101"
21	272	Column 2, line 18		After the sentence ending "inorganic layers, respectively)." Insert: "The foregoing treatment closely follows that of Renshaw and Forrest (2014)."

| 22 | 282 | Prob. 3(a), line 2 | $\left\langle\epsilon_{\infty}\right\rangle=-\frac{\sigma^{2}}{k_{B} T}$ |
| :--- | :--- | :--- | :--- | :--- |$]$| Delete this expression |
| :--- |
| 23 |
| 243 |
| 201 |

32	378	Col. 2, $3^{\text {rd }}$ paragraph, line 7	"particular spectrum, photo-"	"particular spectrum, radio-"
33	386	Col. 2, $2^{\text {nd }}$ full paragraph, line 3	"Fig. 6.20a"	"Fig. 6.22a"
34	421	Column 2, line 2, second paragraph	"known as thermally assisted"	"known as thermally activated (or assisted)"
35	476	Figure 6.126 caption		At end of caption, insert: "Adapted from Barnes et al., 2003)"
36	476	Col. 2, line 1	"lifetime"	"decay rate"
37	476	Col. 2, Eq. 6.111	$F \frac{\tau}{\tau_{0}}$	$P F \frac{\tau}{\tau_{0}}$
38	504	Col. 1 paragraph 1 to Col. 2 paragraph 1.	Delete text starting with "Increasing the operating temperature..." to "thus yields the stretched exponential behavior of the luminance"	Insert: "Increasing the operating temperature can also accelerate aging. We assume that the probability for destroying an emitting molecule is thermally activated, i.e. the probability is: $P=\exp \left(-\Delta E_{A} / k_{B} T\right)$, where ΔE_{A} is the activation energy for the formation of non-radiative molecular species. Now the rate of defect formation can be obtained by solving: $\begin{equation*} \frac{d Q}{d t}=-\left(Q-N_{0}\right) / \tau \tag{6.123} \end{equation*}$

				Where Q is the defect density, N_{0} is the total number of emitting molecules at $t=0$, and τ is the time for defect formation, as defined in Eq. 6.121. Solving Eq. 6.123 yields an exponential decrease in increase in defect density with time: $Q(t)=N_{0}(1-\exp (-t / \tau))$, which is consistent with $Q(0)=0$ and $Q(\infty)=N_{0}$, i.e. all the emitting centers are eventually eliminated as defects. Now, as above, we assume that the defect formation rate is thermally activated such that: $\begin{equation*} \frac{1}{\tau}=k_{0} \exp \left(-\Delta E_{A} / k_{B} T\right) \tag{6.124} \end{equation*}$ Equations 6.121 and 124 suggest that increasing T will accelerate the degradation in luminance, $L(t)$. Then, combining 6.122 and 6.124 we arrive at a luminance lifetime at standard operating initial luminance and operating temperature, T_{0}, that can be related to accelerated by elevated test temperature, $T_{t s t}$, and initial luminance, $L_{0 t s t}$: $\operatorname{LTx}\left(L_{0}, T_{0}\right)=L T x\left(L_{t s t}, T_{t s t}\right)\left[\frac{L_{0 t s t}}{L_{0}}\right]^{n} \exp \left(-\frac{\Delta E_{A}}{k_{B}}\left(\frac{1}{T_{t s t}}-\frac{1}{T_{0}}\right)\right)$ (6.125) This methodology is valid only if the test conditions allow for independent determination of lifetime due to temperature and luminance. Also, the temperature and initial luminance used in the accelerated aging tests must be kept sufficiently low so as not to introduce degradation processes that differ from those experienced under normal operating conditions. Note that a similar analysis also applies to organic detectors (see Sec. 7.8)."
39	552	Col. 2, line 2	"emitting OLED, along"	"emitting OLED on a glass substrate, along"
40	552	Fig. P6.4	Right axis label "cd/cm ${ }^{\text {" }}$	Change to "cd/m"
41	554	Column 1, Prob. 6.9a, line 3	$n_{\text {SiNx }}$	$n_{\text {SiO2 }}$
42	554	Column 1, Prob. 6.9a, line 6	"into the glass substrate?"	"into the air? Assume $\lambda=550 \mathrm{~nm}$."
43	554	Column 1, Prob. 13, line 2-3	"30, 50, and 100"	"30, and 50"

44	555	Column 2, after reference "Barnes, W. L. 1998..."		Insert a new reference: "Barnes, W. L., Dereux, A. \& Ebbesen, T. W. 2003. Nature, 424, 824."
45	566	Column 2, line 5	"Appl. Phys., 92"	Change to "Appl. Phys. Lett., 92"
46	570	Column 2, line 7 after Eq. 7.3	"equal to the total number of photons incident to the electrons generated"	"equal to the ratio of the total number of electrons generated to the photons incident"
47	573	Col. 2 line just prior to Eq. 7.24	"Eq. 7.3"	"Eq. 7.14"
48	573	Col. 2 line 5 following Eq. 7.24	"that reach the active"	"that generate charge in the active"
49	577	Col. 2, Eq. 7.48	$" \eta_{\text {ext }}=\eta_{A} \eta_{\text {int }}=$ "	$" \eta_{\text {int }}=$ "
50	580	Fig. 7.9	One too many charge recomb. zones in the figure	Replace figure with the one attached
51	580	Col. 1, para. 1, line 9	"is similar to"	"differs from"
52	586	Col. 2, line 1	", or less than"	Delete text

53	$\begin{aligned} & \text { 587, Eq. } \\ & 7.65 \end{aligned}$	Col. 2, Eq. 7.65		Replace Eq. 7.65 with " $\Delta f=\frac{1}{2 \pi}\left(\frac{1}{\tau_{E D}+t_{t r}+\tau_{R C}}\right)$ "
54	605	Fig. 7.37	The insets labelled "Porphyrin tapes", "Squaraines" and "PDDTT" need to be corrected	See attached.
55	608	Col. 1, line 1-2	Delete: "All device responses are limited by the hole transit time across the donor layers"	Insert: "While the frequency response of these devices is attributed to the limited hole mobilities in the donors, it may also be due, in part, to slow exciton diffusion to the HJ from their point of generation in the donor and acceptor layers."
56	613	Line immediately above Eq. 7.114	"solutions to Eq. 7.112 yield"	"solutions to Eq. 7.112 for s-states yield"
57	632	Equation 7.138	" $5.52 \times 10^{-5 "}$	Change to " $5.52 \times 10^{-5} \mathrm{sr}$ "
58	635	Col. 1, line 3	" $\eta_{\text {EL }}$ "	" $\eta_{C T}{ }^{\prime \prime}$
59	699	Col. 1, Caption Fig. 7.158	"Modular, axisymmetric architecture commonly used in the design of high performance donors and nonfullerene acceptors. Here, "d" and "a" represent donor and acceptor units, and " π " is a conjugated bridge between units."	"Modular, axisymmetric architecture commonly used in the design of high performance non-fullerene acceptors. Here, "d" and "a" represent donor and acceptor units, and " π " is a conjugated bridge between units. Donors have a similar structure but with d and a moieties switched."

60	730	Col. 1, para. 1, lines 2-13	"When an electron from an adjacent acceptor layer is at distance r from a neutral Ag NP metal sphere, it is attracted by its mirror image with a force of $q^{2} /\left(4 \pi \varepsilon_{r} \varepsilon_{0} r^{2}\right)$. Once the electron binds to the sphere, the NP is negatively charged, and subsequently attracts a hole from the adjacent donor layer with the same force. The electron and hole recombine, and the process begins once more starting with the neutral NP. The binding energy of an electron to the NP is $E_{B}=q^{2} /\left(8 \pi \varepsilon_{r} \varepsilon_{0} r\right)$. At room temperature, and at a distance, $r=4 \mathrm{~nm}, E_{B}=2.4 k_{B} T$."	When an electron from an adjacent acceptor layer is at distance $r \gg R$ from a neutral Ag NP metal sphere of radius R, it is attracted by its mirror image with a force of $-\frac{q^{2}}{4 \pi \epsilon_{0} \epsilon_{r}} \frac{R}{r^{3}}$. Once the electron binds to the sphere, the NP is negatively charged, and subsequently attracts a hole from the adjacent donor layer with the same force. The electron and hole recombine, and the process begins once more starting with the neutral NP. The attractive energy of an electron to the NP is $E_{B}=-\frac{q^{2}}{8 \pi \epsilon_{0} \epsilon_{r}} \frac{R}{\left(r^{2}-R^{2}\right)}$. At room temperature, a charge at a distance, $r=4 \mathrm{~nm}$, for a sphere of radius $2 \mathrm{~nm}, E_{B} \approx-1.5 k_{B} T$.
61	761	Column 2	Insert sentence immediately following Eq. (7.216)	"Note that this expression is valid only if the accelerated aging by intensity is independent of thermal acceleration."
62	777	Col. 2, Eq. 7.220 + following 2 lines	$" \Delta P_{\text {loss }}=I^{2} R_{\text {ser }}$ (7.220) Thus, series-connected cells in modules are preferred over parallel-connected cells to minimize losses"	" $\Delta P_{\text {loss }}=I^{2} R_{\text {ser }}=V^{2} / R_{\text {ser }}$ Thus, series-connected cells in modules are preferred over parallelconnected cells to minimize current losses"
63	786	Prob. 9(c), line 2	"at SRC"	delete
64	795	Column 2, first reference	Delete "High efficiency semi-transparent organic photovoltaics. $46^{\text {th }}$ IEEE PVSC, June 16-21, 2019. Chicago, IL. Paper 484"	Insert "2019. Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Adv. Mater., 31, 1903173."
65	840	Fig. 8.53b	" 0.0 " on x-axis	Change to "1"
66	840	Fig. 8.53c	Right axis, second number from top is " $10^{-8 \prime}$ "	Change to " $10^{-7 \prime \prime}$
67	907	Prob. 11	Replace parts (a) and (b) with new text.	"(a) How well does the gate leakage for Fig. 8.98, option B fit to Frenkel-Poole its dominant source for an 3.6 nm thick AlO_{x} gate insulator coated by a 2.1 nm thick SAM, with $\varepsilon_{\mathrm{r}}=9.8$ and 3.5 , respectively (cf Fig. 8.96). (b) From the best fits in (a), what is the Frenkel-Poole prefactor, A, in Eq. 7.110?"

