Week 9

Light emitters 2

Efficiency Rolloff White OLEDs (WOLEDs) Outcoupling Basics

Chapter 6.5-6.6.1

Bad things happen to good excitons: Sources of roll off at high brightness

$$S + T \xrightarrow{k_{STA}} T^n + S_0 \xrightarrow{k_{Tn}} T + S_0$$
 (STA)

$$S + P \xrightarrow{k_{SPA}} P^n + S_0 \xrightarrow{k_{Pn}} P + S_0$$
 (SPA)

$$S + S \xrightarrow{k_{SSA}} S^n + S_0 \xrightarrow{k_{Sn}} S + S_0$$
(SSA)

Delayed fluorescence Triplet fusion

porescence
$$T + T \xrightarrow{k_{TTA-S}} S^n + S_0 \xrightarrow{k_{Sn}} S + S_0$$
 (TTA-S)

$$T + T \xrightarrow{k_{TTA-T}} T^n + S_0 \xrightarrow{k_{Tn}} T + S_0$$
(TTA-T)

$$T + P \xrightarrow{k_{TPA}} P^n + S_0 \xrightarrow{k_{Pn}} P + S_0$$
(TPA)

Electronics in R. Forrest

Singlet fission when

 $E_s \ge 2E_T$ $S \to 2T$

Efficiency Decreases with Increasing Current

Is it saturation of phosphorescent sites?

Current densities too low. Should be proportional to 1/J but actually closer to $1/\sqrt{J}$.

Or is it T-T annihilation?

How can the roll-off be minimized?

Roll-off due to TTA

T-T annihilation destroys two triplets and creates one singlet

$${}^{3}M^{*} + {}^{3}M^{*} \rightarrow {}^{1}M^{*} + M$$

Fransient model:
$$\frac{d\left[{}^{3}M^{*}\right]}{dt} = -\frac{\left[{}^{3}M^{*}\right]}{\tau} - k_{q}\left[{}^{3}M^{*}\right]^{2} + \frac{J}{qd}$$

 τ : triplet lifetime
$$k_{q}$$
: T-T annihilation rate
$$J$$
: current density
$$d$$
: thickness of active layer

Transient solution:

$$\begin{bmatrix} {}^{3}M^{*}(t) \end{bmatrix} = \frac{\begin{bmatrix} {}^{3}M^{*}(0) \end{bmatrix}}{\left(1 + \begin{bmatrix} {}^{3}M^{*}(0) \end{bmatrix} \tau k_{q} \right) e^{t/\tau} - \begin{bmatrix} {}^{3}M^{*}(0) \end{bmatrix} \tau k_{q}}$$

Steady state solution:

$$\frac{\eta}{\eta_0} = \frac{J_T}{4J} \left(\sqrt{1 + 8\frac{J}{J_T}} - 1 \right)$$

Threshold current density: (for $\eta = \eta_0/2$)

$$J_T = \frac{2qd}{k_q \tau^2}$$

 η : quantum efficiency

Organic Electronics Stephen R. Forrest

 η_0 : max efficiency

Transient Fits to TTA Theory

Steady State Roll off Matches Same TTA Theory

Making 1 from 2: TT vs. ST annihilation

Fluorescent OLED Efficiency Increase Due to TTA

	LiF/Al
5 nm	BPhen
40nm	Rubrene
35 nm	DBP: Rubrene
40nm	NPD
	ITO

Rubrene (E_T=1.1eV, E_S=2.2eV)

DBP (E_T=1.4eV, E_S=2.0eV)

S and T Dynamics Describe TTA

Reactions

Organia Electronics Stephen R.

orrest

Model fits to experiment

EQE of Rubrene OLEDs

Route to high EQE & brightness fluorescent OLEDs:

≻High S fraction in TTA: α
✓2xE_T slightly larger than E_s

≻High TTA: *k*_{TT}
 ✓Strong triplet diffusion

≻Low STA: k_{ST}
✓Low S emis./T abs overlap

Organic Electronics Stephen R. Forrest

11

Increasing Efficiency Through Triplet Management

Triplet-Managed ADN:Alq₃:DCM2 OLEDs

Quantifying White Light

- Color rendering index
 - Effect of an illuminant on the appearance of objects compared to that of a reference source (typically a black-body at a correlated color temperature, CCT)
 - CRI for white light sources should be >80 (i.e. <20% difference in integrated spectrum compared to black-body)

Low CRI

Visit www.lightingfacts.com for the Label Reference Guide.

Registration Number: ZC23-5RLZ31 Model Number: 12E26A60 Type: Replacement lamp - Omnidirectional (A Lamp)

High CRI

Note dull reds

Lighting Comparisons

	Incandescent	Fluorescent	LEDs	OLEDs
Efficacy	17 lm/W	100 lm/W	80-90 lm/W – White 65 lm/W – warm white 240 lm/W-lab demo	150 lm/W Lab demos
CRI	100	80-85	80 – white 90 – warm white	Up to 95
Form Factor	Heat generating	Long or compact gas filled glass tube	Point source high intensity lamp	Large area thin diffuse source. Flexible, transparent
Safety concerns	Very hot	Contains mercury	Very hot in operation	None to date
LT70 (K hours)	1	20	50	30
Dimmable	Yes, but much lower efficacy	Yes, efficiency decreases	Yes, efficiency increases	Yes, efficiency increases
Noise	No	Yes	No	No
Switching lifetime	Poor	Poor	Excellent	Excellent Organic E
Color Tunable	No	No	Yes	Yes

WOLED Challenges

- Good color rendering (high CRI) at the desired CCT
- High efficiency at high intensity
 - Managing triplets
 - Outcoupling
- Long-lived blue
 - Managing triplets
- Thermal management
- Cost reduction

OLEDs for White Light Generation

Separating dopants into bands

- Prevents energy transfer between dopants.
- Control relative emission intensity of dopants by:
 - Varying doping concentrations
 - Adjusting the thickness of bands
 - Inserting blocking layers
 - Adjusting the position of the dopants relative to the HTL

Why does it work?

- Triplets can diffuse much further than singlets (measured ~1000Å)
- Good control over diffusion of excitons using blocking layers and layer thickness

Fluorescent/Phosphorescent WOLED

- Singlet and triplet excitons harvested along independent channels Resonant transfer of both excitonic species is independently optimized:
 - High energy singlet excitons for blue emission
 - Remainder of lower-energy triplet excitons for green and red emission

Performance of Hybrid WOLED

- Total External Quantum Efficiency: $(18.4 \pm 0.5)\%$ Total Power Efficiency: (23.8 ± 0.5) Im/W
- •Color Rendering Index (CRI): 84 at 1, 10 mA/cm², 83 at 100 mA/cm²
- •CIE: (0.40, 0.44) → (0.39, 0.43)

(Y. Sun, et al., Nature, 440, 908, 2006)

Other Approaches to Hybrid WOLEDs

K. Leo, 2007, 2009: introduced neat 4P-NPD layer as blue emitter, recombination at a single interface

Broad Excimer Emission Simplifies Device Structure

Photoluminescence (a.u.)

White Phosphorescent SOLEDs

Requires less current for same luminance as a single unit device

- Longer lifetime at same luminance
- Less current for a given luminance = reduced resistive power losses and heating $I_o, 3xV_o$

White SOLED Panel: Efficacy vs. Luminous Emittance

٠

•

•

White PHOLED Panel

Panel 15 cm x 15 cm 15 mm thick	At 1,000 cd/m ²	At 3,000 cd/m ²
Efficacy [lm/W]	58	49
CRI	82	83
Luminous Emittance [Im/m²]	2,580	7,740
Voltage [V]	3.8	4.3
1931 CIE	(0.466, 0.413)	(0.471, 0.413)
Duv	0.001	0.000
CCT [K]	2,640	2,580
Efficacy Enhancement	1.75x	1.75x
Temperature Rise [ºC]	0.7	7.2
LT70 [hrs]	30,000	4,000

Lower current at constant *L* ⇒lower temperature ⇒longer lifetime

LT70 \sim 30K hrs at 1000 cd/m² Warm White with CCT 2640K

WOLED vs. SOLED Panel Comparison

Panel 15 cm x 15 cm 82% fill factor	Single Unit WOLED*	2 Unit WSOLED
Luminance [cd/m ²]	3,000	3,000
Efficacy [lm/W]	49	48
CRI	83	86
Luminous Emittance [Im/m ²]	7,740	7,740
Voltage [V]	4.3	7.4
1931 CIE	(0.471, 0.413)	(0.454, 0.426)
Duv	0.000	0.006
CCT [K]	2,580	2,908
Temperature [°C]	27.2	26.2
LT ₇₀ [hrs]	4,000	13,000

P.Levermore et al, **SID Digest,** 72.2, p.1060, 2011.

SOLED architecture: ~ 3x LT₇₀ improvement vs. single unit WOLED with similar color and power efficacy

ITO

.5

ITO

OLEDs: Not All Light Goes to the Viewer

Optical paths outcoupled with hemispherical lens

Getting all the photons out

Good solutions

- Inexpensive
- Viewing angle independent
- Independent of OLED structure

Among those things that have been tried

- Optical gratings or photonic crystals¹
- Corrugations or grids embedded in OLED²
- Nano-scale scattering centers³
- Dipole orientation management

¹Y .R. Do, et al, *Adv. Mater.* **15**, 1214 (2003).
²Y. Sun and S.R. Forrest, *Nat Phot.* **2**, 483 (2008).
³Chang, H.-W. *et al. J. Appl. Phys.* **113**, - (2013).

Molecules are radiating dipoles in inhomogeneous media

28

Where do all the photons go?

- Air modes: EQE first increases, then decreases with ETL thickness
- Waveguide modes: Only one waveguide mode TE₀ due to thin ETL (<30nm). TM₀ appears when >50nm.
- Surface plasmon polariton modes: Reduced with ETL thickness
- Both waveguide and SPP modes are quantized
- Total energy is the integral of Power Intensity x cos(θ), so SPP not as small as it looks
 29

Surface Plasmon Polariton (SPP) Modes: Major Loss Channel

 η_{ext} > 80% (incl. substrate + waveguide modes)

- Waveguided light excites lossy SPPs in metal cathode
- Major loss channel partially eliminated by rapid outcoupling of waveguide modes
- Most difficult to eliminate cost-effectively without impacting device structurgenic Electronics
 Stephen R. Forrest
 Stephen R. Forrest

30