Week 7

Growth and Patterning

Materials purification Thin film growth Device patterning Packaging

Chapter 5

Objectives

- Provide a "hands-on" description about how devices are made
- Describe material purification methods
- Describe the various techniques for high quality materials growth
 - ➢Single crystals
 - Solution deposition
 - ➤Vapor phase deposition
- Describe methods of device patterning

Material Purity

To achieve high quality optoelectronic properties, materials must be purified

Impurities take many different forms:

- Extrinsic defects
 - Dopants and "dirt"
 - Substitutional
 - Interstitial
- Intrinsic defects
 - Vacancies
 - Stacking faults

Due to lack of bonds in vdW solids, impurities have different effects

- Create stacking faults
- React with molecular constituents

 Create unwanted bonds
 - ♦ Create fragments

In all cases, the inclusion of <u>unwanted</u> impurities leads to undesirable outcomes

This is different from doping to change the conductivity of a semiconductor

Organic Electronics Stephen R. Forrest

Purification by Thermal Gradient Sublimation

Useful for obtaining very high purity small molecule materials

Tetracene after sublimation

Pyrene

- Reasonably fast and simple
- Material must be sublimable
- Multiple cycles result in higher purity
- Can occur in vacuum or under inert gas flow
- Small crystal growth on chamber walls possible ⁴

Purification of CuPc via Multi-cycle Sublimation in Vacuum

Salzman, et al., Organ. Electron. 6, 242 (2005)

Purification via Solution

Purification via Centrifugation

- Solvent density is graded from top (low density) to bottom (high density)
- Centripetal force (G) applied at 20 80K rpm. (a) Heavier particles float to bottom, (b) lighter to the top.
 (c) Particles of different densities separate independent of size.
- Micropipette extracts particles of desired size and density

Quantum Dots: 2 Solvent Mixture Bai et al., J. Am. Chem. Soc. 132, 2333 (2010)

Crystal Growth: Bridgeman Process

Growth front moved from position of seed

Three ways to manage the growth front temperature

(a) bias-wound heating coil, (b) reflective shield around top coils, (c) immersion into a fluid with two immiscible liquids to conduct heat

anthracene single crystal

Crystal Growth: Czochralski Process

Material has to have a solution (melt) phase

Organic Electronics Stephen R. Forrest 9

Sankaranarayanana and Ramaswamy J. Cryst. Growth 280, 467 (2005)

Film Deposition Vacuum Thermal Evaporation (VTE)

- Most common method to date
- Simple
- Precise
- Multilayer structures possible
- Small molecules, not polymers
- Wasteful of materials
- High vacuum: 10⁻⁷ torr
- Oil-free pumps

ganic Electronics Stephen R. Forrest

In-line VTE for Mass Production

- Display manufacturing lines ~100-125 m in length!
- Glass substrate thickness ~0.3-0.7 mm
- Precise doping requires coincident fluxes from >1 linear source

Organic Electronics

11

Stephen R. Forrest

Organic Molecular Beam Deposition (OMBD)

Near Perfect Growth by OMBD

STM image of PTCDA on Graphite: Layer by layer growth without epitaxial matching

> RHEED of PTCDA on Graphite: Flat and ordered

Organic Vapor Phase Deposition: Concept

Morphology Controlled by Gas Flow and Temperature Conditions

α-NPD (hole conductor)

0.8 nm/s

1 nm/s

1.2 nm/s

15

Nanomorphology control by temperature

(flowrate = constant, pressure = constant)

16

Nanomorphology control by flow rate

(fixed source and substrate temperatures)

Increasing carrier gas flow rate

Crystals	Needle morph. Long, large	Flat morph. Uniaxial, small	
Source temperature	Low	High	
Substrate temperature	High	Low	troni
Carrier gas flow rate	Low	High	Forre
Chamber pressure	Low	High	

Controlled growth of a Bulk HJ by OVPD

F. Yang, et al. Nature Mater., **4**, 39 (2005)

Stranski-Krastonow

Different strain and growth conditions result in different structure₈

Controlling Morphology Via Annealing

amorphous

500 µm

onics

brrest

19

polycrystalline

- DPASQ (asymmetric)
 - Crystalizes easily.
 - Solvent vapor annealed (dichloromethane, DCM)

Understanding the Annealed Structure Selected Area Electron Diffraction (SAED)

- Micron-scale crystals of DPASQ.
- Mesh: 13.9 Å by 16.4 Å, α=90°.
- "Inverse quasi epitaxy": DPASQ crystallization seeded by C₆₀ interface.

Controlling Open-circuit Voltage via Interface Recombination

- Material choice determines:
 ▷ ΔE_{HL} (HOMO-LUMO Gap)
 ▷ Steric hindrance (MO overlap)
- Device processing/morphology can limit V_{oc} losses:
 - $> k_{PPd}$ (PP dissociation)
 - $> k_{PPr}$ (PP recombination)

Organic Electronics Stephen R. Forrest 21

Solution Processing Phenomena

- To maximize V_{OC} in OPVs:
 - Disorder at HJ.
- To maximize *J_{sc}*:
 - Ordered bulk.
 - Finger-like BHJ structure.
- DPSQ maintains interface disorder on SVA Post-C₆₀.
- DPASQ undergoes "inverse quasi-epitaxy" and interdiffusion on SVA Post-C₆₀.
- Blending DPASQ and DPSQ eliminates tradeoff between V_{OC} and J_{SC} and maximizes η_P .

Langmuir-Blodgett Monolayer Film Deposition

- Float molecules functionalized with hydrophilic and phobic groups on opposite ends on H₂O
- Draw hydrophilic or phobic sample surface through the film to pick up molecules
- Squeeze film by bringing barriers in from edges of trough to "heal" the film hole
- Repeat for as many cycles as MLs needed

Different configurations of 3 MLs on substrate surface

ctronics

Electrostatic Monolayer Deposition

Decher, et al. SCIENCE VOL. 277, 29 AUGUST 1997, p 1233

Organic Electronics Stephen R. Forrest 24

Device and Film Patterning

Primary purpose is to define the device area, suited to its function

• Requirements

- ≻Simple
- >Non-destructive of the materials forming the device
- Adaptable to large substrate areas
- Adaptable to flexible substrates
- Rapid (for large scale manufacturing)
- Methods
 - Shadow masking
 - Direct printing (Ink jet and OVJP)
 - > Photolithography
 - Stamping and nanopatterning
 LITI

Example: Pixel micro-patterning in OLED displays

Shadow mask patterning in the kinetic and diffusive film growth regimes

- Shadow mask patterning is the most common form of organic device electrode definition
- Used for producing OLED displays for small mobile and large TV applications

Resolution limits for shadow-masking

Use Photoresist to Create Surface Topography to Pattern Subsequently Deposited Organics

- Avoid exposure to wet chemistry in photolithography
- Resolution defined by photolith limits.
- The pattern left in the polymer provides a near-field "shadow mask" for the deposit

Inkjet Printing

- Organic semiconductors similar to inks used in printing
- Organics must be soluble
- Droplets injected into wells formed by polymer walls

- Film cross section depends on its rheological properties and relative energy with substrate surface
- "Coffee stain effect" encourages piling up of deposit near edges – can result in non-uniform device performance

ctronics

orrest

Printed R–G Pixel Arrays

Red-Green devices printed at nozzle substrate distance: 20 µm

BAIq electron blocking /emissive layer

g (µm)	Green	Red
VTE	(0.27, 0.63)	(0.66, 0.32)
10	(0.27, 0.63)	(0.66,0.33)
100	(0.32, 0.61)	(0.66,0.33)

100 μm subpixels printed on 500 μm centers show no detectible color cross-talk between pixels

McGraw, et al. App. Phys. Lett. 8 013302 (2011)

Laser Induced Thermal Imaging (LITI)

- High power laser beam absorbed in the donor film preloaded with the organic to be transferred
- Donor film placed in contact with substrate
- Heat generated by laser volitalizes organic that transfers to the substrate in the desired pattern

- Donor film must be replaced after each printing
- Useful for sublimable materials (small molecules)
- Radiation damage must be controlled by appropriate absorbing layer

Cold welding: A stamping method used through the ages

Bronze dagger blade with cold-welded gold and silver decorations. From Mycena, Greece: 2nd or 1st millennium B.C.

J. Haisma and GACM Spierings, Materials Science & Engineering R-Reports 37 1 (2002)

Adhesive-free bonding of similar metals

Useful for attaching contacts to organics, or even two organic films within a device.

- Bring 2 clean metal surfaces together under pressure
- Atoms at surfaces eventually share outer shell electrons once any surface barriers are penetrated by pressure
- Bonding (i.e. complete sharing) of electrons occurs in ps

Cold-Welding Row and Column Electrodes

R2R Manufacturing Processes Useful for Rapid, Large-scale OE Device Production

Sheet-to-carrier

Roll-to-Sheet

- Roll-based production requires flexible substrates
- Solution or vapor deposition of films possible
- Requires very clean (i.e. inert) gas environment

Organic Electronics Stephen R. Forrest

Packaging

Water vapor transfer rate determines package quality and use

Common OLED epoxy sealed packaging scheme

What we learned

- Purity must be at the highest level to assure optimum device performance and lifetime
 - Purity obtained by distillation of materials according to their molecular weights
 - Small molecules more easily purified due to weight monodispersity
- Crystal growth in the bulk and thin film possible for materials by growth process and/or by post-growth annealing
 - Controlled, uniform growth by solution and vapor phase possible
- Patterning methods developed that can provide nanoscale features but avoid exposure of layers to destructive wet chemistry
 - Many patterning process adapted from the print industry (inkjet, screen, gravure, etc.)
- Rapid R2R manufacturing of very large areas of devices a nearly unique advantage of organic electronics
 - But manufacturing must be done in clean, oxygen and contaminant-free Organia Elegent R. environment
- Devices must be packaged to be protected from the environment