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Multijunction cells
Singlet Fission
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Multijunction OPV cells: The Most 
Effective Way to Increase Efficiency
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Advantages of multijunction cells:

• Decrease thermalization losses

• Cover a broad spectral range 

(a) Thermalization loss (b) Narrow absorption 
range

Major issues of single junction OPV:
Charge Recom

bination 
Zone (CRZ)

Can significantly exceed the thermodynamic limit of single junction cells
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Tandem Cell Designs: Series Stacking

• VOC = sum of voltages of the subcells in 
the stack

• JSC controlled by the lowest subcell 
current in the stack
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Adding Voltage and Reducing 
Current in Series Stacked Cells
• Reduced current

⇒reduced Joule (I2R) losses
⇒increased FF

Multijunction cells comprising 
DTDCTB and DBP donors, and C70

acceptors

Xiao et al., Appl. Phys. Lett., 106, 203301 (2015) 5
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Tandem Cell Designs: Parallel Stacking

• VOC controlled by the lowest voltage 
element in the stack

• JSC = sum of individual subcell currents
6
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Multijunction Cells are Microcavities

Angle dependence of efficiency is 
small due to thickness of stack 
needed for efficient absorption

X. Che, PhD Thesis, U. Mich. (2018)

Front cell

Back cell

Front cell (near ITO anode) less angle 
dependent than back cell due to longer 𝜆
absorption
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An Example Tandem Cell Structure

• DBP:C70 green absorber.

• Blended squaraine/C70 red/NIR absorber.

8Glass

PTCBI 5 nm 

Ag

MoO3 20 nm

ITO

Blended SQs 16 nm

MoO3 5 nm

DBP:C70 25 nm

Ag 0.1 nm

BPhen 7 nm 

C70 7 nm

C70 10 nm

• Thinner cells have higher IQE.
• Stacking cells in series improves 
the total absorption.
• Addition of the photovoltage
increases VOC.
• Ag nanoclusters provide 
efficient charge recombination.

CRZ
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20 nm 20 nm

45 nm

ITO

Ag

Ag nanoclusters

100nm

PV cell 1

PV cell 2

Charge Recombination Zone: Ag 
Nanoclusters

Nanoclusters give rise to 
surface plasmons

Plamsons reradiate field into 
thin active region

Increase in efficiency >50%

0.5 nm

Yakimov & Forrest, Appl. Phys. Lett., 80 1667 (2002) 9
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Ag cathode

organics

ITO

Rough interface: Surface plasmon excitation

|E|2

Calculation of optical electric field at λ=460nm

Surface plasmons intensify near field absorption
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ZnO NP Layer: Alternative to Ag NPs

All solution processing

ZnO NP Layer

Li et al. J. Am. Chem. Soc. 135, 5529 (2013)

Beek et al.,J. Phys. Chem. B, 109, 9505 (2005)
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Surface Plasmonic Field Focusing in 
Multijunction Cells

Series stacked PTCBI:CuPc cells

• Tandem cell efficiency is >2X single junction efficiency
⇒plasmonic field focusing increases absorption

• Increased number of subcells
⇒peak efficiency at increasing intensity
⇒loss of intensity in the upper cells

• Optimal efficiency at 1 sun intensity for tandem
⇒individual subcells too thin to absorb >50% light

• Voltage is  linear function of number of subcells
⇒nearly lossless CRZ using Ag NPs

Yakimov & Forrest, Appl. Phys. Lett., 80 1667 (2002) 12
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High Efficiency Triple Junction Cell

X. Che, et al. Adv. Energy Mater., 4, 568 (2014)

Transfer matrix calculations of optical field required to 
ensure current generated in every subcell is equal

Optical field distribution
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Combining Solution Processed Back Cell with Vapor 
Deposited Front Cell

CRZ must be lossless, but also must protect front cell from 
damage due to deposition of back cell

Minimal overlap of front 
and back spectra 
ensures current balance

Che et al., Nature Energy, 3, 422 (2018) 14
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[Back] PCE-10:BT-CIC 22.1 0.69 0.70 10.7

[Front] DTDCPB:C70 16.2 0.90 0.67 9.8

Tandem 12.7 1.59 0.71 14.3

Tandem (w/ARC) 13.3 1.59 0.71 15.0

Tandem (1 cm2, w/o ARC) 12.6 1.58 0.57 11.5

High Efficiency Tandem Results

Che et al., Nature Energy, 3, 422 (2018) 15
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Multiexciton Generation via Singlet Fission
Recall from Ch. 3:

1 singlet can generate 2 triplets by fission when ES ≥ 2ET

via the reaction:
   
S0 + S0 + hν → S1 + S0

k fis

′k fis

! ⇀!!↽ !!!
1

TT( ) kT

′kT

! ⇀!!↽ !!! T1 +T1

Precursor triplet pair with singlet symmetry

at rate:
  

′k fis

k fis

= 9
2

exp − 2ET − ES( ) kBT⎡⎣ ⎤⎦

S1

S0

T1

ES ≥ 2ET

Example singlet fission on pentacene followed by
dissociation at a pentacene/C60 HJ

Congreve, et al. Science, 340, 334 (2013) 16



Organic Electronics
Stephen R. Forrest

• Up to 2X current due to two exciton generation
• But voltage (and hence hP) is unchanged
• When combined with a lower energy D-A HJ, thermalization losses can be reduced

Benefits to Employing MEG in PV Cells

S1

4

Fission Process in an OPV Thermodynamic Limits to SF

Hanna & Nozik J. Appl. Phys. 100, 074510 (2006)17
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Increasing Efficiency By Light Trapping
• We have shown that the best detector materials are the most radiative due to reduced non-

radiative recombination
• Thin film cells often do not absorb all the light in one pass
• Strategies to recapture radiated or unabsorbed photons increase cell efficiency

The light intensity trapped in the 
medium is amplified by its high 
index of refraction:

𝐼!"#$%! = 2𝑛&𝛼𝐿𝐼$'(

assuming there is a back surface reflector

Example: CuPc/PTCBI OPV with front and back surface reflectors

Peumans et al. Appl. Phys. Lett. 76, 2650 (2000)
2

18
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Other Light Trapping Strategies
• Most light trapping strategies involve concentration
• Concentration requires solar tracking
• Solar tracking can be expensive

Peumans et al. Appl. Phys. Lett. 76, 2650 (2000)

Compound parabolic mini-concentrators

Self-aligned concentrating microlens arrays

Tvingstedt et al. Opt. Express, 16, 21608 (2008)

V-traps

Kim et al. Opt. Express, 21, A305 (2013)

Echelle reflectors

Tvingstedt et al. Appl. Phys. Lett., 101, 163902 (2012)19
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Luminescent Solar Concentrators: An omnidirectional approach

• Light absorbed in waveguide (plastic) sheet loaded with 
luminescent organic dyes

• Re-emission trapped within the sheet. Only light 
emitted at q > total internal reflection angle lost

• Waveguided light concentrated on solar cells (organic, 
Si, GaAs, etc.) on slab periphery

• Primary loss: Re-adsorption by insufficiently Stokes-
shifted fluorophores

• Solution: Dexter transfer light to lower energy triplet 
state in a co-doped phosphor

S = ratio of emission from phosphor 
to abs. of light by fluorophore

Geometric gain = ratio of 
concentrator to the cell areas

Flux gain = Geometric gain ⨉
propagation loss

Currie et al. Science 321, 226 (2008)

Tandem LSCs

20
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Time for Solar Cell Failure = T80

Quantifying OPV Lifetimes

Measured parameter can be any solar cell performance 
characteristic
(e.g. VOC, jSC, FF, hP,...)

Burn-in period Long term decay period

21
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Analytical Approaches to Failure

  P t( ) = P0 exp − t τ1( ) + Pex exp − t τ 2( )

  
P t( ) = P0 exp − t τ1( )β⎡

⎣⎢
⎤
⎦⎥

  
kdeg = 1 τ = k0 exp − Ea kBT( )

    
A = Pinc

1

Pinc
2

⎛

⎝⎜
⎞

⎠⎟

γ

exp −
Ea

kB

1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Stretched Exponential:

Sum of Exponentials:

Burn in Long term loss

Degradation rate:

Acceleration Factor:

Total energy generated 
during cell useful life:

  
E80 = ηP

t=0

TS 80

∫ t( )Pincdt

(see also Ch. 6.7)

(assumes life begins after burn-in)

Ea = thermal activation of 
degradation rate, kdeg

22
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A Characteristic Data Set

Roesch et al. Adv. Energy Mater. 5, 1501407 (2015)

E80

TS80
TS

P

burn-in

23
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Increasing Stability

Choice of Molecules Impacts Stability

Manceau, et al., J. Mater. Chem., 21, 4132 (2011).24
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Test set up for Accelerated Aging

Populations of devices under very high 
intensity illumination using LEDs

Need to separate effects of temperature and 
intensity acceleration factors
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Data for Extremely High Reliability 
DBP:C70 OPVs
Aging accelerated at high intensity

Q. Burlingame, et al., (2019),Nature, 573, 394.
26
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Extracting Lifetime from Aging Data & 
Acceleration Factors

Q. Burlingame, et al., (2019),Nature, 573, 394.

Extrapolated intrinsic lifetime: >104 years!
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What happens outdoors 
Examining reliability in a real operating environment

h P
(n

or
m

)

Package 
failure

Outdoor testing at Sde Boqer solar 
station, Ben Gurion University of the 
Negev, Israel

1:8 DBP:C70 OPV

Solar concentrator system

Ultimately, solar cell reliability depends on materials, morphologies and test conditions in 
actual environments

Burlingame et al. Organic Electronics, 41, 274 (2016).

Package failed after rain event

28
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Seeking the Chemical Origins of Failure

• Both SubPc and C60 degrade in air
• Degradation reduced for SubPc when encapsulated in N2, but C60 still decays
• Blends show reduced decay rate: excitons in blends extremely short lived
• ⇒excitons and oxygen promote molecular destruction

Absorbance changes of molecules and blends

C60 oligomerization implicated 
in photodegradation

Wang et al. Solar Cells, 125, 170 (2014)29
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Dark Spots On Contacts 
Similar to dark spot formation in OLEDs

Device epoxy “sealed” to PET lid
Active device area equal to emissive area 
Dark spots grow with time

EL image of contact

Klumbies et al. Solar Energy Mater. Solar Cells 120, 685 (2014)

WVTR vs. Defect radius shows defect growth with 
water exposure
Corroded area much larger than defect⇒penetration
by dust?
Barrier formed by top contact
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Stress due to heating can damage 
film over time
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