Week 2-8

Optical Detectors 3

Morphology Materials Active Region Architecture Transparency

Chapter 7.4

The central importance of morphology

From ideal diode theory

- PP recombination ⇒Reverse Slope
- Best morphologies limit k_{PPr} at interface:
 - Steric hindrance
 - Disorder at interfaces/order in the bulk

Morphology Dependence of V_{oc}

$$qV_{OC} = \Delta E_{HL} - nk_BT \ln \begin{bmatrix} k_{PPr} & k_{rec} & N_L & N_H \\ k_{PPd} & J_X & / \alpha_0 \end{bmatrix}^*$$

- Material choice determines:
 ▷ ΔE_{HL} (HOMO-LUMO Gap)
 ▷ Steric hindrance (MO overlap)
- Device processing/morphology can limit V_{oc} losses:
 - $\gg k_{rec}$ (PP formation)
 - $\geq k_{PPr}$ (PP recombination)

*Giebink et al. Phys. Rev. B 82 155305 2010

3

Organic Electronics Stephen R. Forrest

Controlling Interface Morphology to Affect Recombination ($\Rightarrow V_{oc}$)

SVA of Squaraine/Fullerene Solar Cells (see Ch. 4.7)

ð

H

cs st

- DPSQ is spun cast from chloroform.
- Other layers deposited by thermal evaporation.
- Vary D-A interface order via solvent vapor annealing (SVA):
 - 10 min exposure to dichloromethane vapor to "anneal" squaraine component.

SVA Pre-C₆₀

Devices with SVA Post-C₆₀

- SVA post-C₆₀
 - DPSQ EQE ↑ 80%.
 - J_{SC} ↑ 25%.
- No loss in V_{oc}
 - k_{PPr} unchanged.

Process	J _{sc} [mA	V _{oc}	FF	η_P	
	cm ⁻²]	[V]	[%]	[%]	
As Cast	5.3±0.3	0.94	73	3.6±0.2	
Pre-C ₆₀	5.6±0.3	0.86	70	3.4±0.2	anic Electroni
Post-C ₆₀	7.0±0.4	0.96	71	4.8±0.3	ephen R. Forre

J. D. Zimmerman, et al. Nano Lett. 12, 4366 (2012)

Achieving the Ideal Interface Morphology

C ₆₀ DPSQ			
	As Cast	Pre C ₆₀	Post C ₆₀
Bulk DPSQ	Amorphous	Ordered	Mod. Order
Bulk C ₆₀	Weak order	Ordered	Weak Order
Interface	Disordered	Ordered	Disordered
Surface	Smooth	Rough	Smooth
<i>k</i> _{PPr}	Low	High	Low
V _{oc}	High	Low	High
J _{SC}	Low	Moderate	High

J. D. Zimmerman, et al. Nano Lett. (2012)

orrest

7

Morphology vs. V_{OC}

$$qV_{OC} = \Delta E_{HL} - nk_BT \ln\left[\frac{k_{PPr}}{k_{PPd}}\frac{k_{rec}N_LN_H}{J_X/\alpha_0}\right]$$
$$k_{rec} = \gamma = \frac{q}{\varepsilon}(\mu_e + \mu_h)$$

- Worst case scenario: perfectly ordered crystalline interface and bulk, Face-on.
 - High k_{PPr} and k_{rec}
- Better Scenario I: Perfectly crystalline and endon orientation
- Even Better Scenario II: crystalline bulk, intermixed interface
 - Poor coupling between like-molecules (C₆₀-C₆₀ and SQ-SQ) reduces PP formation (k_{rec}) probability.
 - **8** Overcomes enhanced k_{PPr} due to facial contact

Disorder Dependent CT State Energy at Polymer Junctions

- Morphology at functionalized PPV:PCBM HJs controlled by functionalization and blends
- Qualitatively similar phenomena asfor small molecule (DPSQ:C60) junctions

Organic Electronics Stephen R. Forrest 9

Kästner et al., Adv. Sci. 4, 1600331 (2017)

Morphology Controls CT State Energy

CT states are directly excited optically, or by injection from contacts (operating the OPV in the OLED mode).

Shift in energy of CT_2 due to morphology changes as the amount of C70 in DBP changes

X. Liu, et al., ACS Nano 10, 7619 (2016).

Organic Electronics Stephen R. Forrest

CT Energy Increases with C₇₀ Domain Size⇒ Exciton Confinement

- Electron confined to C₇₀ domain, hole immobilized on DBP
 - Barrier (ϕ_h) exists at C₇₀ domain peiphery

X. Liu, et al., ACS Nano 10, 7619 (2016).

New Architectures for Increased Spectral Coverage Exciton Cascades

Schlenker, et al., Chem. Mater., 23, 4132 (2011).

Organia Electronics Stephen R. Forrest

High Efficiency Donor Cascade Device

Ternary BHJs Increase Solar Coverage

Features of ternary blends:

- V_{OC} of the ternary lies between the extremes of the two subcell junctions
- Materials chosen to cover solar spectrum
- Can be DA₁A₂ or AD₁D₂ junctions
- Morphology is key
- Probably more than one process governs performance
- Molecular alloy formation unlikely

Parallel Junction Ternary OPVs

• V_{oc} intermediate between individual binary OPVs

Example DA₁A₂ ternary BHJ

PBDB-T

Meo	

BisPC₇₁BM

D:A ₁ :A ₂	V_{OC}	$j_{SC}^{(a)}$	FF	$\eta_P(\max)$	η_P
Tatio	(\mathbf{v})	(IIIA/CIII-		(70)	(ave)
)			(%)
1:1:0	0.937	16.7	0.69	10.80	10.45
1:1:0.2	0.952	17.4	0.74	12.20	11.75
1:0:1	1.02	10.6	0.58	6.25	5.86

•Cell area = 4 mm². •Sample size = 100 diodes

Exciton blocker

W. Zhao, et al., Advanced Materials, 29, 2, 2017.

Solution-Processed Bi-ternary OPV

Intermixing of two donors creates continuous hole and electron conduction

Cell ^(a)	V _{oc} (V)	j _{sc} ^(b) (mA/cm ²)	FF	$\eta_P(\max) \ (\%)$	$\eta_P(ext{ave})^{(ext{c})} \ (\%)$
BHJ1	0.81	18.5	0.70	10.5	10.3
BHJ2	0.69	7.4	0.71	3.6	3.5
BHJ1/2	0.77	23.8	0.67	12.3	11.9

J. Huang, Advanced Materials, 29, 1606729, 2017.

Series Connecting Two BHJs: Bi-Ternary OPVs

Vacuum Deposited Dipolar Small Molecules in Biternary OPVs

- Large dipole moment of d-a-a' donors evens the HOMO energies of the two when blended, allowing for continuous pathways for holes.
- Electrons conducted by common C₇₀ acceptor

Device	j _{sc} [mA/cm²]	V _{oc} [V]	FF [%]	η _Ρ [%]	
Binary (BTDC-Fo, 80 nm)	14.8	0.98	57.7	8.5	
Binary (DTDCPB, 80 nm)	15.0	0.89	68.5	9.2	
Bi-ternary (60 nm)	13.7	0.98	70.0	9.4	
			Orgà	nic Electror	nics

Li, et al. J. Am. Chem. Soc. 121, 18204 (2018)

19

Stephen R. Forrest

Designing Materials for OPVs

- Most of the usable (by single junction cell) spectrum is at λ < 1.5 μm
- Thermodynamic limits are reached at λ ~ 1 μm
- These considerations guide materials choices

Modular design of materials

- A method of functionalizing molecular cores to :
 - tailor wavelength coverage
 - improve morphology to achieve crystalline of appropriate scale
 - increase charge mobility

Squaraine Donors: Functionalized to improve stacking

ASSQ

DPASQ

Phenyl groups promote planar π -stacking \Rightarrow increased hole mobility \Rightarrow increased fill factor

DPSQ

Oligothiophenes: Extending the core to increase the conjugation length

 Longer electron conjugation ⇒ lower excited state energy ⇒red shift in absorption

Organic Electronics Stephen R. Forrest

23

Non-Fullerene Acceptors

Molecules perfectly adapted for wavelength coverage and high conductivity

- Thiophene donor cores extended for increased conjugation
- Cores protected by alkane groups that also enhance solubility
- Acceptor end groups unprotected to enhance π-stacking

Architecture of thiophene-based NFAs has several common elements

Organia Electronics Stephen R. orrest 24

Hou et al., Nat. Mater., 17, 119 (2018)

Non Fullerene Acceptor Design To Selectively Absorb Into the NIR

Why does extending the core lead to red shifts?

Extending the core increases the electron conjugation length (red line) ⇒separation between electron and hole distributions increases ⇒reduced binding energy ⇒reduced energy loss

$$E_{loss} = E_X - qV_{OC}$$

(b)

Liu, et al. Phys. Rev. Applied, 11, 024060 (2019)

Organic Electronics Stephen R. Forrest

Binding energy of exciton a function of molecular "volume"

Liu, et al. Phys. Rev. Applied, 11, 024060 (2019)

27

orrest

Wavelength-selective Absorption Can Lead to Semitransparent OPVs

Power generating windows (transparent in the visible, absorbing in the NIR) are a major opportunity unique to OPVs

Transparent OPV Figure of Merit

 $LUE = PCE \times APT$

LUE: light utilization efficiency *PCE:* power conversion efficiency *APT:* average photopic transmission

$$APT = \frac{\int T(\lambda)P(\lambda)S(\lambda)d(\lambda)}{\int P(\lambda)S(\lambda)d(\lambda)}$$

λ: wavelength; *T*: transmission *P*: photopic response; *S*: solar photon flux (AM1.5G)

Semi-Transparent Device Materials & Structures

Example of Photon Management

Li, et al. Adv. Mater., 31, 1903173 (2019)

29

Semi-Transparent Organic Solar Cells

Color Tunable Windows

Li, et al. Adv. Mater., 31, 1903173 (2019)

Optical Outcoupling Layers

Li, et al. Adv. Mater., 31, 1903173 (2019)

31