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Week 2-7

Optical Detectors 2

Photodetector applications (cont’d)
Solar cell basics

Measuring OPV efficiency
Device Architectures: Exciton Blocking Layers

Chapter 7.2.2.4-7.4.1
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Photodetectors for Imaging
How your camera works

Color filters

Integrated RGB
Sensitive OPDs

Stacking R, G, B
layers
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Stacked sensors

S. Hokuto, et al., Japan. J. Appl. Phys., 50, 024103, 2011.
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Hybrid Organic/Si CMOS Imager

Lim et al. Sci. Rep. 5, 7708 (2015)

Combination of CMOS focal plane 
array, B & R color filters, and a G OPD
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Organic Charge Coupled Device

Coburn, et al. ACS Photonics 6, 2090 (2019)

• 4 Heterojunction detectors connected to a 3 phase (f) shift register to advance the charge 
collected during each clock cycle

• Exploits long range (cm scale) electron diffusion in fullerene channel
• Diffusion is slow and omnidirectional
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OCCD: How Fast Can It Respond?

Coburn, et al. ACS Photonics 6, 2090 (2019)

Fringe fields between shift register contacts can greatly increase charge transfer rate
Transfer times ~10 ns possible, similar to Si sensors
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Solar Cell Basics
Power Conversion Efficiency, ηP:

• ISC ∝ number of photons absorbed

• VOC determined by material

• Fill factor (FF) related to device 
resistance

𝜂! =
𝐹𝐹 $ 𝐼"# $ 𝑉$#

𝑃%&' 7

FF = VmIm
VOCISC

Fill Factor:

𝑃𝑜𝑤𝑒𝑟 = 𝐼𝑉

𝑃( = 𝐼(𝑉( = 𝐹𝐹𝐼"#𝑉$#Maximum power generated:

VA
Vm

Im

Open circuit 
voltage, VOC

Short circuit current, ISC

Maximum power 
point, MPP

Power 
Generating 
QuadrantIph
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No Cell is Ideal
j = j0 exp q Va − jARser( ) nSkBT( ) − kPPd

kPPd ,eq
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(see Ch. 4.7)
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Fill Factor Depends on Series & Shunt Resistance

FF Rshunt ,Rser( ) = FF ∞,0( ) 1− VOC
jSCRshunt

−
jSCRser
VOC

⎛
⎝⎜

⎞
⎠⎟

CF =
Pinc

Pinc−1sun(1 kW-m-2)
Solar concentration factor:

• Series resistance depends on morphology, contacts
• Shunt resistance depends on D-A junction quality

Bube & Fahrenbruch, Adv. Electron. Electron Phys., 56 163 (1981)
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· Solar power at Earth's surface on sunny day: 1 kW/m2

· Power conversion efficiency of a solar cell: electrical power generated per Watt of 
sunlight in units of W/W or %

Solar Cell Facts

Technology Max. PCE Pros & Cons

Single junction solar cell thermodynamic limit 31% -

Multijunction solar cell record under concentrated 
sunlight 46% Very efficient & expensive 

(100X Si)

Silicon solar cell 24% -

Silicon cell when installed 18-20% Competitive w. fossil fuel
wide deployment

GaAs single junction cell 29% Very expensive, useful for 
space applications

Perovskite cells 24+%
Unstable, toxic materials, 

potentially low cost, 
flexible

Organic cells 18% Potentially low cost, 
flexible, transparent
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Economies of Scale: A Powerful Engine of 
Solar Cost Reduction

ASP = Average sale price
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Cost Reduction of Silicon Solar

12

LCOE= levelized cost of electricity

Competing with Si is a loser’s game

2019 = 5¢
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Solar is growing fast!
and continuing well into the future



Organic Electronics
Stephen R. Forrest

Consider the Source
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Annual Solar Insolation: US
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Thermodynamic Limits to OPV cell Efficiency

Loss in EXCITONIC Solar Cells

Giebink, et al., Phys. Rev. B 83, 195326  (2011) 16

• Source of power: Photons with energy > EG
• Sources of loss:

Ø Radiative and non-radiative exciton recombination
Ø Thermalization of excess photon energy
Ø Recombination of CT states
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Calculating the Thermodynamic 
Efficiency Limit

In OPVs (vs. inorganics), absorption by the CT state, intermediate 
between the exciton and charge generation, must be considered

 EPP = EX + ΔGCT

 
jSC = q α E( ) φs E( ) −φr E( )( )

EPP

∞

∫ dE

  

α E( ) =
0 for E < EPP

α PP for EPP < E < EX

1 for E > EX

⎧

⎨
⎪⎪

⎩
⎪
⎪

Polaron pair energy:
Exciton energy

Free energy loss due to 
relaxation of Ex → CT

Then:

: CT absorption

BB rad. from sun BB rad. from cell

ΔVOC
nr =VOC

rad −VOC = −
mkBT
q

log ηEL( )
There are losses in VOC due to CT cell recombination (measured by the EL eff. in forward bias)

m ≥ 1 due to cell non-idealities

Reduced non-radiative recombination
⇒The best detectors (i.e. smallest DVOC and largest jSC) are the most radiative

j0 =
q
ηEL

ηext
0

∞

∫ E( )φBB E,Ta( )dE
dark current
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figure 4
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Single-Junction OPV Efficiency Limit

Assumptions:
• Based on 2nd Law of Thermodynamics
• Sun=Black Body Source at 5770K
• Polaron pairs mediate photogeneration

Observations:
• OPV efficiency limit: 21.7-27.1%
• Polaron pair energy ⇒Voc redux
• Theory gives SQ limit (⇒general!)18

DGCT = Energy loss
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Single Junction Efficiency Can Be 
Exceeded in Multijunction Cells
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Assumptions: 
hext = 90%
FF = 0.75

These are not ideal 
(thermodynamically limited) cells

Che, PhD Thesis, U. Michigan (2018)
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Measuring Single Junction Solar Cell Efficiency
Challenges:
• The laboratory spectrum (EREF) is not identically equal to the reference solar spectrum (AM1.5G):

It is only simulated (ESIM) 
• Reference detector spectral response (SREF) not identical to the test solar cell (ST) 

ST

SREF

Re
la

tiv
e 

Re
sp

on
se

Wavelength (nm)

Irr
ad

ia
nc

e

Wavelength (nm)

ESIM

EREF

Example spectra:

To correct for these differences we calculate the spectral mismatch factor

  

M =
jSIM

T

jREF
T

jREF
REF

jSIM
REF =

ESIM λ( )ST λ( )dλ
λ1

λ2

∫

EREF λ( )ST λ( )dλ
λ1

λ2

∫

EREF λ( )SREF λ( )dλ
λ1

λ2

∫

ESIM λ( )SREF λ( )dλ
λ1

λ2

∫

𝑗!"#$ = 𝑗!% of test device using the simulated spectrum at 1 sun

𝑗&'($ = 𝑗!% of test device using the reference AM1.5G spectrum at 1 sun
... etc.

M = 1 if SREF = ST or EREF = ET

Solar cell calibration is then:
  
jREF

T =
jREF

REF i jSIM
T

M i jSIM
REF

For most accurate calibration: M≅1
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Measuring Multijunction Cell Efficiency Is Tricky
Cannot calculate spectral correction factor since relative 
excitation of subcells in stack finds a different current balance 
point than the reference spectrum
Solution: Directly measure the quantum efficiency of each subcell and 
calculate efficiency assuming the ref. spectrum

• Light bias the “other subcell” to create an optical short circuit
• Measure the desired cell hext(l) by usual means
• Light bias the desired subcell and measure hext(l) of the other 

cell by usual means
• Correct the efficiencies to their operating voltage points in the 

multijunction cell to compensate for slope in efficiency under 
reverse bias (due to kPPd(V)) – see below

• Sum the two efficiencies to obtain jSC assuming the ref. spectrum

Gilot, et al. Adv. Funct. Mater., 20, 3904 (2010)
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Organic Solar Cell Challenges

• High efficiency (>17%)
• Large Module Size
• High Reliability (>20 years)
• Low Production Cost (<$0.50/Watt)

0

2

4

6

PC
E 

(%
)

22



Organic Electronics
Stephen R. Forrest

Getting to High Efficiency: 
The Double Heterojunction

Ag

Problem Solution

•cathode metal diffusion
•deposition damage
•exciton quenching
•vanishing optical field
•electrical shorts

Introduce ‘Exciton Blocking Layer’
(EBL) to:

• confine excitons to active region
• separates active layer from metal
• act as a buffer to damage
• EBL thickness determined by depth of 
damage (if too thick, EBL is insulating)

Ag

ITO ITO

EBL
~200Å

(Tang cell: 1%)
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High efficiency via increased exciton diffusion length:
Fullerene acceptors & double HJs

ITO/PEDOT/200Å CuPc/400Å C60/150Å BCP/800Å Al
Peumans & Forrest., Appl. Phys. Lett., 79,126 (2001)
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Species of Exciton Blockers
• Essential for high efficiency
• Transport charge
• Reduce quenching
• Provides optical spacer
• Reduces damage from Cathode

Trap state transport e-h recombination e-transporter

Lassiter et al., Appl. Phys. Lett, 98, 243307 2011
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e-h Recombination Buffers

Does not depend on defect formation 
⇒ layer thickness can be optimized 
for optical coupling to active region 

Rand, et al. Adv. Mater. 17, 2714 (2005)
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Recombination Rate Determined by HOMO-
LUMO Offset at Acc.-Buffer Junction

Family of Ru-compounds with 
varying Acc.-Buffer Energy Offsets

Marcus inversion

Renshaw et al. Phys. Rev. B, 84, 045315 (2011)
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Electron Filtering Buffer Layer

Bartynski, et al., 13, 3315 Nano Lett (2013)

BC
PC
60

3.7

6.2

Ag

4.3

BC
P+

C
60

• Highly transparent
• Electron conductivity independent of C60

conc. to ~30%
• Compound buffer: C60:Bphen/BPhen
• Active region: DBP:C70
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C60:Bphen Electron Filtering Blockers

Doping 
(C60:BCP)

Blocking 
Efficiency (%)

1:0 49.9 ± 0.8

1:1 81.0 ± 0.6

1:2 94.9 ± 0.6

1:4 98.4 ± 0.6

Bartynski, et al., 13, 3315 Nano Lett (2013)


