#### Week 2-7

#### **Optical Detectors 2**

#### Photodetector applications (cont'd) Solar cell basics Measuring OPV efficiency Device Architectures: Exciton Blocking Layers



Chapter 7.2.2.4-7.4.1

# Photodetectors for Imaging

#### How your camera works





#### Stacked sensors



# Hybrid Organic/Si CMOS Imager



Combination of CMOS focal plane array, B & R color filters, and a G OPD



Lim et al. Sci. Rep. 5, 7708 (2015)

## Organic Charge Coupled Device



- 4 Heterojunction detectors connected to a 3 phase (f) shift register to advance the charge collected during each clock cycle
   Organic Electronics
- Exploits long range (cm scale) electron diffusion in fullerene channel
- Diffusion is slow and omnidirectional

Coburn, et al. ACS Photonics 6, 2090 (2019)

Stephen R. Forrest

## OCCD: How Fast Can It Respond?



Transfer times ~10 ns possible, similar to Si sensors

Coburn, et al. ACS Photonics 6, 2090 (2019)



#### Power Conversion Efficiency, $\eta_P$ :

- $I_{SC} \propto$  number of photons absorbed
- V<sub>OC</sub> determined by material
- Fill factor (FF) related to device resistance



Maximum power generated:

$$P_m = I_m V_m = FFI_{SC} V_{OC}$$

Fill Factor:

$$r: \quad FF = \frac{V_m I_m}{V_{OC} I_{SC}}$$

$$\eta_P = \frac{FF \cdot I_{SC} \cdot V_{OC}}{P_{inc}}$$



7

#### No Cell is Ideal

(see Ch. 4.7)

$$j = j_0 \left[ \exp\left(q\left(V_a - jAR_{ser}\right)/n_S k_B T\right) - \frac{k_{PPd}}{k_{PPd,eq}} \right] + \frac{V_a - jAR_{ser}}{R_{shunt}} - j_{ph} \right]$$

$$V_{OC} = \frac{n_S k_B T}{q} \log\left(\frac{j_{ph}}{j_0} + \frac{k_{PPd}}{k_{PPd,eq}}\right) \approx \frac{n_S k_B T}{q} \log\left(\frac{j_{SC}}{j_0} + 1\right)$$

$$j_{SC} \qquad (a)$$

 It is customary to plot power generating *j*-V of 4<sup>th</sup> quadrant in the 1<sup>st</sup>

• 
$$P = (+j)(+V) > 0$$





#### Fill Factor Depends on Series & Shunt Resistance



Bube & Fahrenbruch, Adv. Electron. Electron Phys., 56 163 (1981)

Organia Electronics

orrest

Stephen R.

#### **Solar Cell Facts**

- $\cdot$  Solar power at Earth's surface on sunny day: 1 kW/m<sup>2</sup>
- Power conversion efficiency of a solar cell: electrical power generated per Watt of sunlight in units of W/W or %

| Technology                                                  | Max. PCE | Pros & Cons                                                                               |
|-------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------|
| Single junction solar cell thermodynamic limit              | 31%      | -                                                                                         |
| Multijunction solar cell record under concentrated sunlight | 46%      | Very efficient & expensive<br>(100X Si)                                                   |
| Silicon solar cell                                          | 24%      | -                                                                                         |
| Silicon cell when installed                                 | 18-20%   | Competitive w. fossil fuel<br>wide deployment                                             |
| GaAs single junction cell                                   | 29%      | Very expensive, useful for space applications                                             |
| Perovskite cells                                            | 24+%     | Unstable, toxic materials,<br>potentially low cost,<br>Organic Elec<br>flexible Stephen R |
| Organic cells                                               | 18%      | Potentially low cost, flexible, transparent                                               |

# Economies of Scale: A Powerful Engine of Solar Cost Reduction



ASP = Average sale price

## **Cost Reduction of Silicon Solar**

#### **Cost Reductions to Reach Utility-Scale PV Goal**



# Solar is growing fast!

#### and continuing well into the future



Solar energy represented **30%** of new capacity additions **over the past 5 years** and now supplies over 2.5% of the nation's annual U.S. electricity.

SOLAR ENERGY TECHNOLOGIES OFFICE

15



Source: Energy Information Administration, 2019 Annual Energy Outlook

Sources: BNEF, "New Energy Outlook 2019;" EIA, "2020 Annual Energy Outlook;" reference case; EIA, "2020 Annual Energy Outlook;" NREL, "2019 Standard Scenarios," mid case.

2020 SETO Peer Review



#### Consider the Source





Organic Electronics Stephen R. Forrest

### Annual Solar Insolation: US



#### Thermodynamic Limits to OPV cell Efficiency



Giebink, et al., Phys. Rev. B 83, 195326 (2011)

# Calculating the Thermodynamic Efficiency Limit

In OPVs (vs. inorganics), absorption by the CT state, intermediate between the exciton and charge generation, must be considered

Free energy loss due to  
Exciton energy relaxation of 
$$Ex \rightarrow CT$$
  
Polaron pair energy:  $E_{pp} = E_{\chi} + \Delta G_{CT}$  dark current  
Then:  $j_{sc} = q \int_{E_{pp}}^{\infty} \alpha(E)(\phi_s(E) - \phi_r(E)) dE$   $j_0 = \frac{q}{\eta_{EL}} \int_{0}^{\infty} \eta_{ext}(E) \phi_{BB}(E, T_a) dE$   
BB rad. from sun BB rad. from cell  
 $\alpha(E) = \begin{cases} 0 & for & E < E_{pp} \\ \alpha_{pp} & for & E_{pp} < E < E_{\chi} \end{cases}$  : CT absorption

There are losses in V<sub>OC</sub> due to CT cell recombination (measured by the EL eff. in forward bias)  $\Delta V_{OC}^{nr} = V_{OC}^{rad} - V_{OC} = -\frac{mk_BT}{q} \log(\eta_{EL}) \quad m \ge 1 \text{ due to cell non-idealities}$ Organic Electronics Stephen R. Forrest

Reduced non-radiative recombination

 $\Rightarrow$ The best detectors (i.e. smallest  $\Delta V_{OC}$  and largest  $j_{SC}$ ) are the most radiative

#### Single-Junction OPV Efficiency Limit



٠

ics

est

# Single Junction Efficiency Can Be Exceeded in Multijunction Cells



Che, PhD Thesis, U. Michigan (2018)

#### Measuring Single Junction Solar Cell Efficiency

Challenges:

- The laboratory spectrum ( $E_{REF}$ ) is not identically equal to the reference solar spectrum (AM1.5G): It is only simulated ( $E_{SIM}$ )
- Reference detector spectral response ( $S_{REF}$ ) not identical to the test solar cell ( $S_T$ )



Solar cell calibration is then:  $j_{REF}^{T} = \frac{j_{REF}^{REF} \cdot j_{SIM}^{T}}{M \cdot j_{SIM}^{REF}}$ 

For most accurate calibration:  $M \cong 1$ 

Organic Electronics Stephen R. Forrest

20

#### Measuring Multijunction Cell Efficiency Is Tricky



Wavelength (nm)

Cannot calculate spectral correction factor since relative excitation of subcells in stack finds a different current balance point than the reference spectrum

Solution: Directly measure the quantum efficiency of each subcell and calculate efficiency assuming the ref. spectrum

- Light bias the "other subcell" to create an optical short circuit
- Measure the desired cell  $\eta_{ext}(\lambda)$  by usual means
  - Light bias the desired subcell and measure  $\eta_{ext}(\lambda)$  of the other cell by usual means
- Correct the efficiencies to their operating voltage points in the multijunction cell to compensate for slope in efficiency under reverse bias (due to  $k_{PPd}(V)$ ) see below
- Sum the two efficiencies to obtain j<sub>sc</sub> assuming the ref. spectrum



## Organic Solar Cell Challenges

- High efficiency (>17%)
- Large Module Size
- High Reliability (>20 years)
- Low Production Cost (<\$0.50/Watt)</li>



#### Getting to High Efficiency: The Double Heterojunction

#### Problem



(Tang cell: 1%)

cathode metal diffusion
deposition damage
exciton quenching
vanishing optical field

electrical shorts



Introduce 'Exciton Blocking Layer' (EBL) to:

- confine excitons to active region
- separates active layer from metal
- act as a buffer to damage
- EBL thickness determined by depth of damage (if too thick, EBL is insulating)

Organic Electronics

High efficiency via increased exciton diffusion length: Fullerene acceptors & double HJs



Peumans & Forrest., Appl. Phys. Lett., 79,126 (2001)

### **Species of Exciton Blockers**



#### e-h Recombination Buffers



#### Recombination Rate Determined by HOMO-LUMO Offset at Acc.-Buffer Junction



## **Electron Filtering Buffer Layer**



# C<sub>60</sub>:Bphen Electron Filtering Blockers

