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Week 2-6

Optical Detectors 1

Photodetection Basics
Organic photoconductors and photodiodes

Chapter 7.1-7.2
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Objectives
• Understand the physics of photodetection in organic 

photoconductors and photodiodes
• Understand OPD performance characteristics

– Dark current
– Efficiency and responsivity
– Bandwidth
– Noise

• Learn about OPD applications
• Solar cells: what makes OPVs a compelling story?
• Learn how to characterize solar cell performance
• Solar cell architectures

– Thermodynamic efficiency limits to single junction cells
– Multijunction cells and other architectures
– The role of morphology
– Some materials

• What lies beyond the horizon?
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Photodetectors
• Transducers that convert light to another energy form 

(in our case, electricity)
• Types

– Photoconductors
– Photodiodes

• These are operated in the reverse-biased (photodetection) or 
photovoltaic mode

• Properties
– Sensitivity & Efficiency
– Spectral range
– Bandwidth
– Dynamic range
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Photoconductors
• Earliest organic electronic devices
• Simplest (no HJs needed)

When illuminated, conductivity changes

 
σ = q µnn + µ p p( )
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Without background doping:   n0 = p0 = ni

nph = pph

L

hn

Semiconductor

Contact
Contact

I
I

jpjn
d

W



Organic Electronics
Stephen R. Forrest

en
er
gy

Exciton

HOMO

LUMO

krecnp

kdissN

kDN

jX	/d

Ground
State

Free	
Charge

kDN0

n,	p	

jT /qd

Photocharge generation
• Generation does not occur through an intermediate CT state 

as it does at OPD heterojunctions:

 
Gph = kDnph =

ηext Pincλ hc( )
dWL

tD = 1/kD = lifetime of charge
hext = external quantum efficiency (electrons out/photons in)

  
jph =σ F = qnph µn + µ p( )Va

L
= q

ηext Pincλ hc( )
kD

µn + µ p( ) Va

dWL2

⇒ Photocurrent:

Generation rate:
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Quantum Efficiency and Responsivity

External quantum efficiency = No. electrons generated 
No. of photons incident = 𝜂!"# =

ℎ𝑐𝑗$%
𝑞𝜆𝑃&'(

Responsivity = [A/W]Current generated
Power incident = ℛ = !!"

"#$%
= #$

%&
𝜂'()

Internal quantum efficiency = No. electrons generated 
No. of photons absorbed = 𝜂&'# =

ℎ𝑐𝑗$%
𝑞𝜆𝑛$%𝑃&'(

where:  𝑛$% =
)*+
, ∫-

, 𝑒𝑥𝑝 −𝛼 𝜆 𝑥 𝑑𝑥

for a total reflection coeff’t, R, from the surface, and an absorption coeff’t of a in an 
active region of thickness, d.
Note: the total thickness must account for internal reflections and other cavity effects
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Gain and bandwidth

• Bandwidth: Df = 1/2πtD

• Leading to a gain-bandwidth product: gDf= 1/2πttr

  
jph =σ F = qnph µn + µ p( )Va

L
= q

ηext Pincλ hc( )
kD

µn + µ p( ) Va

dWL2

gηext =
jph A

q Pincλ hc( )
Quantum efficiency cannot be 
separated from gain

⇒ A photoconductor has gain:
  
g =

jph

j0

= τ D µn + µ p( )Va

L2

  
j0 = qηEQE Pincλ hc( ) dWWhere:

That is: gain = tD/ ttr, where the carrier transit time is ttr = L/v = L/µF = L2/µV

ext



Organic Electronics
Stephen R. Forrest

Calculating the Noise Current

• Determines the sensitivity of a photodetector to low intensity signals

• Signal-to-noise ratio: 𝑖!"# = mean square photocurrent
𝑖$# = mean square noise current

minimum level of detectability

(after Rose, 1963. Concepts in Photoconductivity and Allied Problems)

Consider a “general” photodetector. It has randomly generated particles, each carrying 
charge zq in time interval, t, between electrodes, resulting in current, j.

Then, the noise current is: 

A
B =

C!"
#

C$#
>  1

in
2 1/2

=
n
1/2

τ
ζq

where 𝑛 1/2 is the rms number of particles collected in t.
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Calculating Noise Current, con’t
Thus, in terms of the total mean current, iT, the mean square noise current is:

in
2 =

n
τ 2

ζq( )2 = qiTζτ
Since the bandwidth is Df=1/2t, and accounting for both generation and recombination, 
we get a shot noise current of:

is
2 = 4qgiTΔf

If diffusion is dominant, then the charge delivered per particle is reduced by the
fraction of charge diffusing to the contacts for a slab of length, L:  z = LD/L. 
Using 𝐿% = 𝐷𝜏 and the Einstein relation for mobility, we obtain the thermal, or 
Johnson noise:

ith
2 =

4kBTΔf
RPC

RPC is the resistance of the conductor

Finally, there is flicker, or 1/f noise: i f
2 = κΔf

f α
k, a are empirical constants

The total noise current is then the sum of the squares of the various contributions 
(they are uncorrelated): 𝑖$# = 𝑖&# + 𝑖'"# + 𝑖(# +...
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Graphically, Noise Spectra Look Like...

if
2 = κΔf

f α

ist
2 = 4qgtiTΔft

i 2th =
4kBTΔf
RPC

a > 1

(2 for OPD)

i f
2 = κΔf

f α

ith
2 =

4kBTΔf
RPC

𝑖&#
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Photodiodes and solar cells
• Many of the same considerations as photoconductors except 

there is a junction for efficient charge separation.

2
3

1 Exciton generation by absorption of 
light (abs length~1/α

4

Exciton diffusion over ~LD

Exciton dissociation by rapid 
and efficient charge transfer
Charge extraction by the internal 
electric field

Typically: LD<<1/α

ηint = ηAηEDηCTηCCext

11
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Basic OPD/OPV structure
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• Recall (Ch. 4) that the j-V characteristics are given by: 

j0 = qa0krecNS
2 1−ηPPd( )exp −ΔEHL kBT( )

j = j0 exp q Va − jARser( ) nSkBT( ) − kPPd
kPPd ,eq

⎡
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13

Saturation current

Equivalent circuit

Current generation
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Current-Voltage Characteristics

Rshunt =
1
A
dVa
dj

Va=0Cu
rr

en
t d

en
sit

y
Voltage

jSCjph VOC

Rshunt Rser

Photodetector mode Photovoltaic mode

• In the photovoltaic mode, the power is P = jV < 0; i.e. the device delivers power to 
the external circuit.

• In the photodetector mode, P > 0 and the detector dissipates power.
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Photodetector Equivalent Circuit & 
Frequency Response

  
Δf = 1

2π
1
ttr

+ 1
τ ED

+ 1
τ RC

⎛
⎝⎜

⎞
⎠⎟

: RC time constant

tED : exciton diffusion time

𝑡') = ⁄𝑤# µ𝑉 : transit time through depleted regions of the device (w)

Gain-Bandwidth product =gDf = Df since in a PD, g = 1.

𝜏*+ = (𝑅&,) +𝑅-||𝑅.$)(𝐶/ + 𝐶0) (𝑅/→ ∞)
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Pentacene/C60 OPD Frequency Response

TIA: Transimpedance amplifier through which the diode is biased

High frequency response due to high pentacene mobility

Tsai et al. Appl. Phys. Lett., 95, 213308 (2009)
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Heterojunction Morphologies
Breaking the tradeoff between LD and a with BHJs 

Bulk HJ Mixed HJ Annealed BHJ Controlled BHJ 17
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Polymer Bulk HJ

18
Yu et al. Science, 270, (1995), 1789
Halls et al., (1995) Nature, 376, 498.
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Small Molecule Planar-Mixed HJ
Small molecule blends:

ηCC =
LC
xM

1− exp − xM LC( )( )

hED = 1

J. Xue, Adv. Mater., vol. 17, p. 66, 2005. 19

Charge carrier collection length, LC, replaces diffusion 
length since excitons dissociate at point of generation 
without diffusion to HJ
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Comparison of OPDs and OPCs

 

Table 7.2: Comparison of operating parameters of photoconductors and photodiodes 

Parameter Photoconductor Photodiode 
Operating 

voltage 
Near equilibrium (!! → 0) Reverse bias 

Photocurrent 
gain (g) 

! !!"⁄  (1-106) 1 

ηint   

 
ηext   

Responsivity   

Bandwidth (Δf) 1 2!!!⁄  1 2!!!"⁄  
Gain-

bandwidth 
product (gΔf) 

 
1 2!!!"⁄  

 
1 2!!!"⁄  

    

Specific 
detectivity (D*)   

 

PPr

20
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The first bilayer OPD/OPV

Tang, Applied Phys. Lett., (1986) 48, 183. 21
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ISC = 2.3mA/cm 2

VOC = 450mV
CuPc (300Å)

Glass

Ag

ITO

PTCBI (500Å)

hP = 0.95%
FF = 0.65

acceptor donor

hP = power conversion efficiency
FF = fill factor
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Photodetector Materials
• Good materials absorb in the region of interest
• Morphology promotes exciton diffusion and charge conduction (high mobility)

Ultra-violet

Selected donors

Generally, donors employ fullerene acceptors in OPDs



Organic Electronics
Stephen R. Forrest

RT

RR

High Bandwidth Multilayer Photodetectors

Place all D/A junctions
within LD of absorption site

Stack layers until total 
thickness d ~ 1/α

Apply voltage to sweep charge
out of potential wells

Bandwidth due to transit time
across d.

d

23
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Spectral + Voltage Dependence of the EQE
•Sensitive to visible + NIR wavelengths
•Strong dependence on bias: EQE~75% @ -10V
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Peumans, et al. Appl. Phys. Lett., 76, 3855 (2000). 24
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Response Time
Thinner individual layers makes faster devices due to a reduced exciton lifetime

t=160Å
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PTCBI lifetime=(1.8±0.1)ns

100 µm diameter, -9V, 1.4ps excitation @ 670nm at (1.0±0.3)W/cm2.  

Estimated carrier velocities: ( ) 41.1 0.1 10v d cm st= = ± ´

25Peumans, et al. Appl. Phys. Lett., 76, 3855 (2000).
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26

Long wavelength Detectors
Carbon Nanotubes Can Stretch Detection to NIR

Chirality determines if CNT
is metallic, semiconducting or insulating

Ch = na1 + ma2

n = m: Metallic
n-m = 3i (i integer), n≠m, nm≠0: semimetal
otherwise: semiconductor

Organic/CNT Detector

CNT:MDMO-PPV composite Mat of bare CNT

500 nm 500 nm

Arnold, et al., Nano Letters, 9, 3354, 2009.
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Long wavelength Detectors
Single Walled Nanotubes Wrapped in Polymer

Responsivity and Specific Detectivity: 

27

D* = AΔf
NEP

=R AΔf
in
2 [cm-Hz1/2/W]

M. S. Arnold, et al., Nano Letters, 9, 3354, 2009.

=
jph A

Pinc
= qgηext

λ
hc

⎛
⎝⎜

⎞
⎠⎟

R [A/W]D* = AΔf
NEP

=R AΔf
in
2
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Position Sensitive Detectors

• Mechanism of operation
– Extended junction transports charge vertically (no 

current spreading)
– Current divided by linear resistance of ITO strip

R1 R2
I1 I2
A A

V

ID/2 ID/2Iph

PEDOT:PSS

ITO

CuPc
PTCBI

BCPAg

Glass Substrate

Rand, et al. IEEE Photon. Technol. Lett., 15, 1279 (2003). 
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0 V 0.7%
-0.5 V 0.1%
-1 V 0.1%

-1.5 V 0.8%
-2 V 1.3%

120 μW 0.8%

510 μW 0.1%

1.3 mW 0.1%

Position Detection Characteristics
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Applications of PSDs

• Machine vision
– Part location and positioning
– Robot servo feedback
– 2D possible

• Lab bench positioning
• Free space communication

(1 to 1 correlation between
object location and position of image)

PSD


