Week 2-6

Optical Detectors 1

Photodetection Basics Organic photoconductors and photodiodes

Chapter 7.1-7.2

Objectives

- Understand the physics of photodetection in organic photoconductors and photodiodes
- Understand OPD performance characteristics
 - Dark current
 - Efficiency and responsivity
 - Bandwidth
 - Noise
- Learn about OPD applications
- Solar cells: what makes OPVs a compelling story?
- Learn how to characterize solar cell performance
- Solar cell architectures
 - Thermodynamic efficiency limits to single junction cells
 - Multijunction cells and other architectures
 - The role of morphology
 - Some materials
- What lies beyond the horizon?

Photodetectors

- Transducers that convert light to another energy form (in our case, electricity)
- Types
 - Photoconductors
 - Photodiodes
 - These are operated in the reverse-biased (photodetection) or photovoltaic mode
- Properties
 - Sensitivity & Efficiency
 - Spectral range
 - Bandwidth
 - Dynamic range

Stephen R.

Photoconductors

- Earliest organic electronic devices
- Simplest (no HJs needed)

When illuminated, conductivity changes

$$\sigma = q\left(\mu_n n + \mu_p p\right) \begin{bmatrix} p = p_{ph} + p_0 \\ n = n_{ph} + n_0 \end{bmatrix} \begin{bmatrix} n_{ph} \\ n = n_{ph} + n_0 \end{bmatrix}$$

Organic Electronics Stephen R. Forrest

 $= p_{ph}$

Without background doping:
$$n_0 = p_0 = n_i$$

Photocharge generation

 Generation does not occur through an intermediate CT state as it does at OPD heterojunctions:

 $\tau_D = 1/k_D$ = lifetime of charge η_{ext} = external quantum efficiency (electrons out/photons in)

 \Rightarrow Photocurrent:

$$j_{ph} = \sigma F = q n_{ph} \left(\mu_n + \mu_p \right) \frac{V_a}{L} = q \frac{\eta_{ext} \left(P_{inc} \lambda / hc \right)}{k_D} \left(\mu_n + \mu_p \right) \frac{V_a}{dWL^2}$$

Quantum Efficiency and Responsivity

External quantum efficiency =

 $\frac{\text{No. electrons generated}}{\text{No. of photons incident}} = \eta_{ext} = \frac{hcj_{ph}}{q\lambda P_{inc}}$

Internal quantum efficiency =

 $\frac{\text{No. electrons generated}}{\text{No. of photons absorbed}} = \gamma$

$$\eta_{int} = \frac{hcj_{ph}}{q\lambda n_{ph}P_{inc}}$$

where:
$$n_{ph} = \frac{(1-R)}{d} \int_0^d exp(-\alpha(\lambda)x) dx$$

for a total reflection coeff't, *R*, from the surface, and an absorption coeff't of α in an active region of thickness, *d*.

Note: the total thickness must account for internal reflections and other cavity effects

Responsivity =
$$\frac{\text{Current generated}}{\text{Power incident}} = \mathcal{R} = \frac{j_{ph}}{P_{inc}} = \frac{q\lambda}{hc} \eta_{ext}$$
 [A/W]

Gain and bandwidth

$$j_{ph} = \sigma F = q n_{ph} \left(\mu_n + \mu_p \right) \frac{V_a}{L} = q \frac{\eta_{ext} \left(P_{inc} \lambda / hc \right)}{k_D} \left(\mu_n + \mu_p \right) \frac{V_a}{dWL^2}$$

 $\Rightarrow \text{A photoconductor has gain:} \quad g = \frac{j_{ph}}{j_0} = \tau_D \left(\mu_n + \mu_p\right) \frac{V_a}{L^2}$

Where:
$$j_0 = q \eta_{ext} (P_{inc} \lambda / hc) / dW$$

That is: gain = τ_D / t_{tr} , where the carrier transit time is $t_{tr} = L/v = L/\mu F = L^2/\mu V$

$$g\eta_{ext} = \frac{j_{ph}A}{q(P_{inc}\lambda/hc)}$$

Quantum efficiency cannot be separated from gain

- Bandwidth: $\Delta f = 1/2\pi \tau_D$
- Leading to a **gain-bandwidth product**: $g\Delta f = 1/2\pi t_{tr}$

Calculating the Noise Current

(after Rose, 1963. Concepts in Photoconductivity and Allied Problems)

• Determines the sensitivity of a photodetector to low intensity signals

• Signal-to-noise ratio:
$$\frac{S}{N} = \frac{\langle i_{ph}^2 \rangle}{\langle i_n^2 \rangle} > 1$$
 $\langle i_{ph}^2 \rangle = \text{mean square photocurrent}$
minimum level of detectability

Consider a "general" photodetector. It has randomly generated particles, each carrying charge ζq in time interval, τ , between electrodes, resulting in current, *j*.

Stephen R.

where $\langle n \rangle^{1/2}$ is the rms number of particles collected in τ .

Calculating Noise Current, con't

Thus, in terms of the total mean current, i_{τ} , the mean square noise current is:

$$\left\langle i_{n}^{2}\right\rangle = \frac{\left\langle n\right\rangle}{\tau^{2}} \left(\zeta q\right)^{2} = \frac{q i_{T} \zeta}{\tau}$$

Since the bandwidth is $\Delta f = 1/2\tau$, and accounting for both generation and recombination, we get a **shot noise current** of: $\langle i_s^2 \rangle = 4qgi_T \Delta f$

If diffusion is dominant, then the charge delivered per particle is reduced by the fraction of charge diffusing to the contacts for a slab of length, *L*: $\zeta = L_D/L$. Using $L_D = \sqrt{D\tau}$ and the Einstein relation for mobility, we obtain the **thermal**, or **Johnson noise**:

$$\left\langle i_{th}^{2} \right\rangle = \frac{4k_{B}T\Delta f}{R_{PC}}$$

 R_{PC} is the resistance of the conductor

Organic Electronics bhen R. Forrest

Finally, there is **flicker**, or **1/f noise**:

$$\left\langle i_{f}^{2}\right\rangle = \frac{\kappa\Delta f}{f^{\alpha}}$$

 κ , α are empirical constants

The total noise current is then the sum of the squares of the various contributions (they are uncorrelated): $\langle i_n^2 \rangle = \langle i_s^2 \rangle + \langle i_{th}^2 \rangle + \langle i_f^2 \rangle + \dots$

Graphically, Noise Spectra Look Like...

Photodiodes and solar cells

• Many of the same considerations as photoconductors except there is a junction for efficient charge separation.

- $\frac{1}{10}$ Exciton generation by absorption of light (abs length~1/ α
- 2 Exciton diffusion over $\sim L_D$
- Exciton dissociation by rapid and efficient charge transfer

Charge extraction by the internal electric field

Basic OPD/OPV structure

Current generation

• Recall (Ch. 4) that the *j*-V characteristics are given by:

$$j = j_0 \left[\exp\left(q\left(V_a - jAR_{ser}\right)/n_s k_B T\right) - \frac{k_{PPd}}{k_{PPd,eq}} \right] + \frac{V_a - jAR_{ser}}{R_{shunt}} - j_{ph}$$

Saturation current
$$j_0 = qa_0 k_{rec} N_s^2 \left(1 - \eta_{PPd}\right) \exp\left(-\Delta E_{HL}/k_B T\right)$$

Current-Voltage Characteristics

anic Electronics

ephen R. Forrest

- In the photovoltaic mode, the power is P = jV < 0; i.e. the device delivers power to the external circuit.
- In the photodetector mode, *P* > 0 and the detector dissipates power.

Photodetector Equivalent Circuit & Frequency Response

 $\tau_{RC} = (R_{ser} + R_L || R_{in})(C_j + C_P) \qquad (R_j \to \infty) \qquad : \text{RC time constant}$

 au_{ED} : exciton diffusion time

 $t_{tr} = w^2 / \mu V$: transit time through depleted regions of the device (w)

Gain-Bandwidth product $=g\Delta f = \Delta f$ since in a PD, g = 1.

Pentacene/C₆₀ OPD Frequency Response

High frequency response due to high pentacene mobility

Tsai et al. Appl. Phys. Lett., 95, 213308 (2009)

Heterojunction Morphologies Breaking the tradeoff between L_D and α with BHJs

Bulk HJ

Mixed HJ

Annealed BHJ

Controlled BHJ

Polymer Bulk HJ

Yu et al. Science, **270**, (1995), 1789 Halls et al., (1995) Nature, 376, 498.

Small Molecule Planar-Mixed HJ

Small molecule blends: $\eta_{ED} = 1$

$$\eta_{CC} = \frac{L_C}{x_M} \left(1 - \exp\left(-\frac{x_M}{L_C}\right) \right)$$

Charge carrier collection length, *L_C*, replaces diffusion length since excitons dissociate at point of generation without diffusion to HJ

J. Xue, Adv. Mater., vol. 17, p. 66, 2005.

Comparison of OPDs and OPCs

Parameter	Photoconductor	Photodiode
Operating	Near equilibrium ($V_a \rightarrow 0$)	Reverse bias
voltage		
Photocurrent	$\tau/t_{tr} (1-10^6)$	1
gain(g)		
$\eta_{\scriptscriptstyle int}$	$k_{diss} / (k_{diss} + k_D)$	$k_{_{PPd}}/(k_{_{PPd}}+k_{_{PPr}})$
	$j_{ph}A$	$j_{ph}A$
η_{ext}	$\overline{qgig(P_{_{inc}}\lambda/hcig)}$	$\overline{q\left(P_{_{inc}}\lambda/hc ight)}$
Responsivity	$qg\eta_{_{ext}}ig(\lambda/hcig)$	$q \eta_{_{ext}} (\lambda/hc)$
Bandwidth (Δf)	$1/2\pi\tau_D$	$1/2\pi t_{tr}$
Gain-		
bandwidth	$1/2\pi t_{tr}$	$1/2\pi t_{tr}$
product $(g\Delta f)$		
$\overline{i}_n^2/\Delta f$	$\left(4k_{B}T\right)/R_{PC}+\kappa/f^{\alpha}$	$2qi_T + 4k_BT/R_L \parallel R_{in}$
Specific	() A	
detectivity (D*)	$q\eta_{ext}(\lambda/hc)\sqrt{\frac{1}{(4k_{B}T)/R_{PC}+\kappa/f^{\alpha}}}$	$q\eta_{ext}(\lambda/hc)\sqrt{\frac{1}{2qi_{T}+4k_{B}T/R_{L}\parallel R_{in}}}$
		20

The first bilayer OPD/OPV

Photodetector Materials

- Good materials absorb in the region of interest
- Morphology promotes exciton diffusion and charge conduction (high mobility)

Generally, donors employ fullerene acceptors in OPDs

High Bandwidth Multilayer Photodetectors

Place all D/A junctions within L_D of absorption site

Stack layers until total thickness d ~ $1/\alpha$

Apply voltage to sweep charge out of potential wells

Bandwidth due to transit time across d.

Spectral + Voltage Dependence of the EQE

•Sensitive to visible + NIR wavelengths

•Strong dependence on bias: EQE~75% @ -10V

Response Time

Thinner individual layers makes faster devices due to a reduced exciton lifetime

100 µm diameter, -9V, 1.4ps excitation @ 670nm at (1.0±0.3)W/cm².

Estimated carrier velocities: $v = d/\tau = (1.1 \pm 0.1) \times 10^4 \ cm/s$

Long wavelength Detectors

Carbon Nanotubes Can Stretch Detection to NIR

Arnold, et al., Nano Letters, 9, 3354, 2009.

26

Long wavelength Detectors Single Walled Nanotubes Wrapped in Polymer

27

M. S. Arnold, et al., Nano Letters, 9, 3354, 2009.

Position Sensitive Detectors

- Mechanism of operation
 - Extended junction transports charge vertically (no current spreading)
 - Current divided by *linear* resistance of ITO strip

Rand, et al. *IEEE Photon. Technol. Lett.*, **15**, 1279 (2003).

Position Detection Characteristics

Applications of PSDs

- Machine vision
 - Part location and positioning
 - Robot servo feedback
 - 2D possible
- Lab bench positioning
- Free space communication

