Week 2-5

Light emitters 5

OLED Reliability Lasers

Chapter 6.7-6.8

Organic Electronics Stephen R. Forrest

Reliability Testing Methodologies

- Need to set clear metrics for failure
 - Example: Operating time for initial luminance (L_0) to decrease 10% from its initial value (called T90, or LT90)
 - Employ a population of equivalent devices and monitor their performance parameter (e.g. luminance) under normal operating conditions
 - If degradation slow, then an empirical degradation relationship is determined to extrapolate time to failure
 - Example: Stretched exponential function:

 $L(t) = L_0 exp(-t/\tau)^{\beta}$ τ, β = empirical constants

- If degradation too slow, need to accelerate via increased T or L_0 .
 - Accelerated conditions must not introduce new failure modes
 - Need empirical relations to normalize lifetime to standard operating conditions (called acceleration factors)
 Organic Electronics Stephen R. Forrest

$$LTx(L_0) = LTx(L_{0tst}) \cdot \left[\frac{L_{0tst}}{L_0}\right]^n$$

n = empirical acceleration factor

Accelerated Degradation Methodologies

$$L(t)/L_0 = \lambda \exp(-t/\tau_1) + (1-\lambda)\exp(-t/\tau_2)$$

$$\frac{1}{\tau_2} = K'' j^{\alpha} \exp\left(-\Delta E_{A0}/k_B T\right)$$

 ΔE_{A0} =thermal activation of degradation α = current acceleration factor

Measuring populations of identical devices

Yoshioka, et al.. 2014, *SID Digest Tech. Papers*, 45, 642.

Intrinsic Lifetime Limits of OLEDs

Giebink, et al., J. Appl. Phys., 103, 044509 (2008).

Degradation Routes

Exciton-Exciton Annihilation

Bond	BE(eV)	Bond	BE(eV)
C-C	3.64	N-N	1.69
C-H	4.28	N-O	2.08
C-O	3.71	N-H	4.05
C-N	3.04	0-0	1.51
C-F	5.03	H-H	4.52

Bond cleavage Broken bonds? → Defects!

Evidence for Defect Formation: Molecular Fragmentation

Jeong, et al. Org. Electron., 64, 15 2019

Identification of Defect Energies

Jeong, et al. Org. Electron., 64, 15 2019

Reducing Exciton Density to Increase Lifetime

Y. Zhang, et al., Nature Comm. 5 5008 (2014)

Spreading the recombination zone: Dopant/Host Grading

Excitons in the EML

10 X Lifetime Improvement Over Conventional

Dopant Grading: Is it Good Enough? using acceleration factors to predict lifetime

- Luminance to achieve sRGB color gamut for G is 10X that for B
- \Rightarrow B sub-pixel L_0 =100 cd/m² (c.f. G with L_0 >1,000 cd/m²)
- \Rightarrow B lifetime to T50=70,000 hr.
- Adopting Degradation acceleration factor: *n* = 1.55 with

$$T50(100 \text{ cd/m}^2) = T50(1000 \text{ cd/m}^2) \times \left[\frac{1000 \text{ cd/m}^2}{100 \text{ cd/m}^2}\right]^n$$

- \Rightarrow B PHOLED lifetime to T50 = 1.3×10⁵ hr.
- Commercial G PHOLED lifetime = 10^6 hours at $L_0 = 1000$ cd/m².

Organic Electronics Stephen R. Forrest

Not blue enough, T95 is required

Dopant Grading for Lighting: Is it OK?

- Current state of stacked WOLED: T70=13,000 hrs
- Mostly limited by blue lifetime
- Only light blue required
- Estimated increase in lifetime for stacked blue at lighting brightness: ~4X
- Lifetime of blue lighting using grading: 50,000 hr

This is almost good enough

Hot excited state management: Eliminating the highest energy excited states

Managed blue PHOLEDs

Plenty of Energy Levels to Access in the Management Process

Excited state energy (eV)

Lifetime Improvements and TTA/TPA Model

- Greatest improvement in lifetime when manager at position of highest exciton density (S3)
- Fractional increase in lifetime decreases with time
 - ➤ Greater at T90 than T80 ⇒manager depletion

Putting Grading Excited State Management to Work: Long lived all phosphor stacked WOLEDs

- Max Luminance > 200,000 nits
- 50 lm/W max
- CCT = 2780K
- CRI=89

Photo illustrating good color rendering of the SWOLEDs in this report. The luminaire comprises 36 pixels (2 mm²) operated at 50-100k nits

All Phosphor SWOLED Performance

Coburn et al., ACS Photonics 5, 630 (2017)

What we learned about OLEDs

- Chromaticity and the perception of color is quantified based on eye response (photometic quantities)
- OLEDs reach highest efficiency when both singlets and triplets are harvested (heavy metal complexes and TADF molecules)
- Optimized OLEDs have many layers serving purposes ranging from charge conduction, contacting to electrodes, to light emission
- Outcoupling methods essential to view substrate and waveguide modes while limiting surface plasmons
- Degradation of OLEDs particularly severe for blue due to bimolecular annihilation
- Lighting requires broad spectral emission using multilayer rganic Electronics devices or excimer emission
- OLEDs provide uniform, area lighting vs. specular LED lighting

Packaging Matters

(see Ch. 5)

- Without packaging, there is rapid degradation of OLED luminance
- Dark spot defect formation of contacts more rapid in atmosphere than when packaged in inert (e.g. N₂) gas.

- Dark spot formation on cathode as seen from the top Organic Electronics Stephen R. Forrest
- Defect bright EL spots soon become dark
- Defects appear to be due to dust on substrate penetrating device active region

Burrows et al., Appl. Phys. Lett., 65, 2922 (1994)

Organic Lasers

- High intensity, monochromatic sources
- To date, only optical pumping has unambiguously shown lasing
- Large triplet and electrode losses, and low mobilities (hence low current) hamper electrical pumping

How to identify a laser

- A clear threshold between spontaneous and stimulated emission evident from an abrupt increase in output slope efficiency
- A significant narrowing of the spectral linewidth at threshold. Single mode lasers show linewidths ~1Å, multimode lasers will have multiple emission lines coincident with the gain (PL) spectrum of the material, and whose separation is $\Delta\lambda$ ~1/L, the cavity length
- A well-defined output beam
- Temporal and spatial coherence of the output beam

Features of Organic Lasers

Kozlov, et al., Appl. Phys. Lett. 71, 2575 (1997).

Gain vs. Index Guided Lasers

Gain guiding

- Simple
- Can lead to high thresholds
- Can lead to modal instabilities

Index guiding

- More complex
- Can reduce thresholds
- Has modal instabilities only at very high power

ctronics

orrest

Optically pumped lasers

Longitudinal Configuration

Vertical Cavity Surface Emitting Laser (OVCSEL) Organic Electronics

Stephen R. Forrest

Pulsed Organic Lasers

- Why does organic lasing last only <100ns?
 Initially (<10ns)
 - ➤ Negligible T
 - Gain=Loss
 - Later (>100ns)
 - ➤ T builds up
 - ➤ Gain ↓ : S-T quenching
 - \succ Loss \uparrow : T absorption
 - Same source of loss prevents electrically pumped laser action

Triplet saturation and CW threshold

Zhang & Forrest, Phys. Rev. B, 84, 241301 (2011)

Example Laser -- DCM2:Alq₃

- •PL fit follows S-T quenching
 □S*+T*→S₀+T**
 - •Lasing fit follows S-T and T absorption □P+T*→T**
 - Lasing condition

$$g_{net}(t) = \Gamma \sigma_{stim} S(t) - \alpha_{cav} - \Gamma \sigma_{TT} T_G(t) \ge 0$$

Lasing turns off once triplet loss exceeds gain

The Triplet Management Concept

- Introduce a 3rd molecule into the gain region that quickly removes triplets⇒reduced absorption loss
- Same concept works in fluorescent OLEDs to reduce rolloff due to accumulation of triplets at high intensity

T absorption and lasing with T management $\mathsf{Alq}_3:\mathsf{DCM2}$

Management Allows CW Lasing Above the CW threshold

Zhang & Forrest, Phys. Rev. B, 84, 241301 (2011)

What we have learned

- OLEDs are the leading application of organic electronics due to their features of:
 - Color versatility due to chemical modification
 - 100% internal efficiency in PHOLEDs and TADF molecules
 - Stability over long term operation (except in the blue)
 - Thin film, flexible form factors allowing for their use in mobile applications
 - Very attractive lighting colors and luminance characteristics
 - But...optical outcoupling losses and long lived PHOLEDs and TADF devices are remaining challenges to be solved.
- Organic lasers are excited primarily via optical pumping with features of:
 - Wavelength agility
 - Extraordinary temperature stability of its threshold and spectral properties
 - But...electrical pumped lasing remains a challenge due to large triplet and contact losses.

