Week 2-4

Light emitters 4

Stacked WOLEDs Outcoupling

Chapter 6.5.4-6.6

White Phosphorescent SOLEDs

Requires less current for same luminance as a single unit device

- Longer lifetime at same luminance
- Less current for a given luminance = reduced resistive power losses and heating $I_o, 3xV_o$

SOLED Operation Principles

White SOLED Panel: Efficacy vs. Luminous Emittance

٠

•

•

White PHOLED Panel

Panel 15 cm x 15 cm 15 mm thick	At 1,000 cd/m ²	At 3,000 cd/m ²
Efficacy [lm/W]	58	49
CRI	82	83
Luminous Emittance [Im/m²]	2,580	7,740
Voltage [V]	3.8	4.3
1931 CIE	(0.466, 0.413)	(0.471, 0.413)
Duv	0.001	0.000
CCT [K]	2,640	2,580
Efficacy Enhancement	1.75x	1.75x
Temperature Rise [ºC]	0.7	7.2
LT70 [hrs]	30,000	4,000

Lower current at constant *L* ⇒lower temperature ⇒longer lifetime

Sector Sector		
	_	- Internation
	_	
ABUILDUSTAN		

LT70 \sim 30K hrs at 1000 cd/m² Warm White with CCT 2640K

WOLED vs. SOLED Panel Comparison

Panel 15 cm x 15 cm 82% fill factor	Single Unit WOLED*	2 Unit WSOLED
Luminance [cd/m ²]	3,000	3,000
Efficacy [lm/W]	49	48
CRI	83	86
Luminous Emittance [Im/m ²]	7,740	7,740
Voltage [V]	4.3	7.4
1931 CIE	(0.471, 0.413)	(0.454, 0.426)
Duv	0.000	0.006
CCT [K]	2,580	2,908
Temperature [°C]	27.2	26.2
LT ₇₀ [hrs]	4,000	13,000

SOLED architecture: ~ 3x LT₇₀ improvement vs. single unit WOLED with similar color and power efficacy st

P.Levermore et al, SID Digest, 72.2, p.1060, 2011.

OLEDs: Not All Light Goes to the Viewer

Optical paths outcoupled with hemispherical lens

Getting all the photons out

Good solutions

- Inexpensive
- Viewing angle independent
- Independent of OLED structure

Among those things that have been tried

- Optical gratings or photonic crystals¹
- Corrugations or grids embedded in OLED²
- Nano-scale scattering centers³
- Dipole orientation management

¹Y .R. Do, et al, *Adv. Mater.* **15**, 1214 (2003).
²Y. Sun and S.R. Forrest, *Nat Phot.* **2**, 483 (2008).
³Chang, H.-W. *et al. J. Appl. Phys.* **113**, - (2013).

Molecules are radiating dipoles in inhomogeneous media

C.

9

Where do all the photons go?

- Air modes: EQE first increases, then decreases with ETL thickness
- Waveguide modes: Only one waveguide mode TE₀ due to thin ETL (<30nm). TM₀ appears when >50nm.
- Surface plasmon polariton modes: Reduced with ETL thickness
- Both waveguide and SPP modes are quantized
- Total energy is the integral of Power Intensity x cos(θ), so SPP not as small as it looks

11

WOLED Outcoupling Can Yield True Color

Surface Plasmon Polariton (SPP) Modes: Major Loss Channel

 η_{ext} > 80% (incl. substrate + waveguide modes)

- Waveguided light excites lossy SPPs in metal cathode
- Major loss channel partially eliminated by rapid outcoupling of waveguide modes
- Most difficult to eliminate cost-effectively without impacting device structurenic Electronics
 Stephen R. Forrest
 Stephen R. Forrest

12

Substrate Mode Outcoupling: ~2X Improvement

1

2.

3. <u>1</u>

 η_{ext} ~40%

Glass mold

Mold

Glass substrate

РММА

Wet etching mold

Microlens arrays: Polymer hemispheres much smaller than pixel

Möller, S. & Forrest, S. R. 2001. J. Appl. Phys., 91, 3324.

Reidel, et al., Opt. Express 18 A631 (2010)

Spectrum angle independent

← Scattering and surface roughness also can reduce substrate modes Stephen R. Forrest

13

Chang, et al., J. Appl. Phys., 113 204502 (2013)

Waveguide Mode Outcoupling: Embedded Low Index Grid

Low Index Grid Images

- OLED >> Grid size >> Wavelength
- Embedded into OLED structure
- May partially decouple waveguide mode from SPPs

Hybrid WOLED Performance Using Embedded Grids + Microlens Arrays

A better approach: Sub-Anode Grid

- A multi-wavelength scale dielectric grid between glass and transparent anode (subanode grid)
- The grid is removed from the OLED active region
- Waveguided light is scattered into substrate and air modes

17

Qu,et al., Nature Photonics (2015), 9, 758

Emission field calculations

WITH GRID

WITHOUT GRID

Organic Electronics Stephen R. Forrest 18

Qu,et al., Nature Photonics (2015), 9, 758

Optical Power Distribution

Qu,et al., Nature Photonics (2015), 9, 758

Eliminating SPPs Using Sub-Anode Grid + Mirror

Sub-electrode grid modeling

Variable Waveguide Widths Above Mirror Prevent Mode Propagation via Scattering

Qu, et al. ACS Photonics, 4, 363 2017

s ;t

Performance with and without grid+mirror

Qu, et al. ACS Photonics, 4, 363 2017

Getting All the Light Out: Sub-Electrode Microlens Array (SEMLA)

Qu, Y., et al. 2018. ACS Photonics, 5, 2453.

SEMLAs Change the Outcoupling Landscape

Qu, Y., et al. 2018. ACS Photonics, 5, 2453.

SEMLA Performance

Qu, Y., et al. 2018. ACS Photonics, **5**, 2453.

Gratings Provide Efficient Waveguide Mode Outcoupling

Process for fabricating 1D and 2D gratings using optical interference resist exposure

Advantages Can be very efficient

Disadvantages

Requires high resolution photolith over large areas Very wavelength and angle dependent

Organia Electronics Stephen R. Forrest 26

Bocksrocker et al., Opt. Express, 20, A932 (2012)

Diffuse Reflectors: Low Cost & Simple

Kim, J., et al. (2018), ACS Photonics, 5, 3315.

Outcoupling Enhancements by Molecular Orientation

Outcoupling Improvements via Alignment

Example results

30

• Alignment is never "perfect": only modest improvements

Alignment is Driven by Energy and **Deposition Dynamics**

Lampe, et al. Chem. Mater. 28, 712 (2016)

Molecular functionalization can drive orientation: Aliphatic groups avoid substrate

Kim, et al. Adv. Mater. 31, 1900921 (2016)

Substrate Corrugations Can Outcouple Waveguide Modes

- Waveguide thickness varies due to the corrugation.
- As the thickness changes, the mode distribution changes.
- When the waveguided power travels from thin to thick areas, the k vector needs to change direction to keep "being trapped". Otherwise, the light is extracted.

A possible approach: Surface buckling?

