Week 2-3

Light Emitters 3

TADF Rolloff and Annihilation WOLEDs Ch. 6.3.4 - 6.3.5, 6.5.1-6.5.4

Phosphor Sensitized Fluorescence

Transferring excitations from phosphor to increase fluorescent OLED efficiency Opens door to 100% fluorescence efficiency

- Phosphorescent donor and fluorescent acceptor must be separated to prevent direct Dexter transfer to fluorescent triplet state
- Transfer possible for radiative triplet states

Sensitized Fluorescence from Ir(ppy)₃ to DCM2

- Phosphorescent sensitizer improves efficiency by factor of 3.7
- Fluorescent "sensitizer" makes no difference

Baldo, et al. Nature 403, 750 (2000)

TADF: Another approach to high efficiency

Uoyama et al., Nature, 492, 234 (2012).

TADF Cu-complexes and the Energy Gap Law

TADF Sensitized Fluorescence

"Hyperfluorescence"

- Like phosphor sensitized fluorescence, transfer excitation from TADF molecule to fluorophore at lower energy
- Allows for the use of wide palette of fluorophores with improved spectral properties compared to host TADF "assistant" molecule

Organic Electronics Stephen R. Forrest

6

TADF Sensitized Fluorescence: Results

Low voltage high efficiency p-i-n PHOLEDs

Doping p and n transport regions leads to near thermodynamically limited voltage for emission

thickness of the CBP/Ir(ppy)₃ emission layer: 5nm

Pfeiffer, M., et al. 2003. Org. Electron., 4, 89.

8

Low voltage high efficiency p-i-n PHOLEDs

Bad things happen to good excitons: Sources of roll off at high brightness

$$S + T \xrightarrow{k_{STA}} T^n + S_0 \xrightarrow{k_{Tn}} T + S_0$$
 (STA)

$$S + P \xrightarrow{k_{SPA}} P^n + S_0 \xrightarrow{k_{Pn}} P + S_0$$
 (SPA)

$$S + S \xrightarrow{k_{SSA}} S^n + S_0 \xrightarrow{k_{Sn}} S + S_0$$
(SSA)

Delayed fluorescence Triplet fusion

orescence
$$T + T \xrightarrow{k_{TTA-S}} S^n + S_0 \xrightarrow{k_{Sn}} S + S_0$$
 (TTA-S)

$$T + T \xrightarrow{k_{TTA-T}} T^n + S_0 \xrightarrow{k_{Tn}} T + S_0$$
(TTA-T)

$$T + P \xrightarrow{k_{TPA}} P^n + S_0 \xrightarrow{k_{Pn}} P + S_0$$
(TPA)

Electronics In R. Forrest

Singlet fission when

 $E_s \ge 2E_T$ $S \to 2T$

Efficiency Decreases with Increasing Current

Is it saturation of phosphorescent sites?

Current densities too low. Should be proportional to 1/J but actually closer to $1/\sqrt{J}$.

Or is it T-T annihilation?

11

How can the roll-off be minimized?

Roll-off due to TTA

T-T annihilation destroys two triplets and creates one singlet

$${}^{3}M^{*} + {}^{3}M^{*} \rightarrow {}^{1}M^{*} + M$$
Transient model:
$$\frac{d\left[{}^{3}M^{*}\right]}{dt} = -\frac{\left[{}^{3}M^{*}\right]}{\tau} - k_{q}\left[{}^{3}M^{*}\right]^{2} + \frac{J}{qd}$$

$$\xrightarrow{\tau: \text{ triplet lifetime}}{k_{q}: \text{ T-T annihilation rate}} \qquad J: \text{ current density} \\ d: \text{ thickness of active layer}$$
Transient solution:
$$\left[{}^{3}M^{*}(t)\right] = \frac{\left[{}^{3}M^{*}(0)\right]}{\left(1 + \left[{}^{3}M^{*}(0)\right]\tau k_{q}\right)e^{\frac{t}{\tau}} - \left[{}^{3}M^{*}(0)\right]\tau k_{q}}$$

Steady state solution:

$$\frac{\eta}{\eta_0} = \frac{J_T}{4J} \left(\sqrt{1 + 8\frac{J}{J_T}} - 1 \right)$$

Threshold current density: (for $\eta = \eta_0/2$)

 η : quantum efficiency η_0 : max efficiency

 $J_T = \frac{2qd}{k_{\star}\tau^2}$

Organic Electronics Stephen R. Forrest

12

Transient Fits to TTA Theory

Steady State Roll off Matches Same TTA Theory

Making 1 from 2: TT vs. ST annihilation

Fluorescent OLED Efficiency Increase Due to TTA

	LiF/Al
5 nm	BPhen
40nm	Rubrene
35 nm	DBP: Rubrene
40nm	NPD
	ITO

Rubrene (E_T=1.1eV, E_S=2.2eV)

DBP (E_T=1.4eV, E_S=2.0eV)

16

S and T Dynamics Describe TTA

Reactions

orrest

Model fits to experiment

EQE of Rubrene OLEDs

Route to high EQE & brightness fluorescent OLEDs:

≻High S fraction in TTA: α
✓2xE_T slightly larger than E_s

High TTA: k_{TT}
 ✓ Strong triplet diffusion

≻Low STA: k_{ST}
✓Low S emis./T abs overlap

Organic Electronics Stephen R. Forrest

19

Increasing Efficiency Through Triplet Management

Triplet-Managed ADN:Alq₃:DCM2 OLEDs

Quantifying White Light

- Color rendering index
 - Effect of an illuminant on the appearance of objects compared to that of a reference source (typically a black-body at a correlated color temperature, CCT)
 - CRI for white light sources should be >80 (i.e. <20% difference in integrated spectrum compared to black-body)

Visit www.lightingfacts.com for the Label Reference Guide.

Registration Number: ZC23-5RLZ31 Model Number: 12E26A60 Type: Replacement lamp - Omnidirectional (A Lamp)

High CRI

Note dull reds

Low CRI

Lighting Comparisons

	Incandescent	Fluorescent	LEDs	OLEDs
Efficacy	17 lm/W	100 lm/W	80-90 lm/W – White 65 lm/W – warm white 240 lm/W-lab demo	150 lm/W Lab demos
CRI	100	80-85	80 – white 90 – warm white	Up to 95
Form Factor	Heat generating	Long or compact gas filled glass tube	Point source high intensity lamp	Large area thin diffuse source. Flexible, transparent
Safety concerns	Very hot	Contains mercury	Very hot in operation	None to date
LT70 (K hours)	1	20	50	30
Dimmable	Yes, but much lower efficacy	Yes, efficiency decreases	Yes, efficiency increases	Yes, efficiency increases
Noise	No	Yes	No	No
Switching lifetime	Poor	Poor	Excellent	Excellent Organic E
Color Tunable	No	No	Yes	Yes

23

WOLED Challenges

- Good color rendering (high CRI) at the desired CCT
- High efficiency at high intensity
 - Managing triplets
 - Outcoupling
- Long-lived blue
 - Managing triplets
- Thermal management
- Cost reduction

OLEDs for White Light Generation

Separating dopants into bands

- Prevents energy transfer between dopants.
- Control relative emission intensity of dopants by:
 - Varying doping concentrations
 - Adjusting the thickness of bands
 - Inserting blocking layers
 - Adjusting the position of the dopants relative to the HTL

Why does it work?

- Triplets can diffuse much further than singlets (measured ~1000Å)
- Good control over diffusion of excitons using blocking layers and layer thickness

Fluorescent/Phosphorescent WOLED

- Singlet and triplet excitons harvested along independent channels **—** Resonant • transfer of both excitonic species is independently optimized:
 - High energy singlet excitons for **blue** emission
 - Remainder of lower-energy triplet excitons for green and red emission

(Y. Sun, et al., Nature, 440, 908, 2006)

Performance of Hybrid WOLED

- Total External Quantum Efficiency: $(18.4 \pm 0.5)\%$ Total Power Efficiency: (23.8 ± 0.5) Im/W
- •Color Rendering Index (CRI): 84 at 1, 10 mA/cm², 83 at 100 mA/cm²
- •CIE: (0.40, 0.44) → (0.39, 0.43)

(Y. Sun, et al., Nature, 440, 908, 2006)

Alternative Hybrid Designs

K. Leo, 2007, 2009: Introduced neat 4P-NPD layer as blue emitter, recombination at a single interface

4 Color EML Results in High Efficiency and CRI

CRI = 83 CCT = 3332K (warm white) η_{P} = 61.7 lm/W

Organic Electronics Stephen R. Forrest 29

Chang, et al. Adv. Func. Mater., 23, 705 (2013)

Broad Excimer Emission Simplifies Device Structure

Simultaneous Blue Exciton & Broad Excimer Emission Can Generate White

Excimer WOLED Spectra

- emitters
- Excimer not as efficient as monomer emission

Bakken, et al. J. Photon. Energy, 2, 021203 (2012)

Organic Electronics Stephen R. Forrest

concentration

D'Andrade, et al. Adv. Mater. 14, 1032 (2002)