Week 2-2

Light Emitters 2

OLED Basics, cont'd OLED Design Color & Efficiency Emission Processes Materials Ch. 6.1 – 6.3.3

Electroluminescence Process in an OLED

- 1. Charge injection
- 2. Charge transport
- 3. Exciton formation
- 4. Exciton radiative recombination

OLED efficiency

$$\eta_{ext} = \eta_{int} \eta_{out} = \chi_r \phi_p \eta_{out}$$

$$\gamma: \text{ charge carrier balance factor ratio of e/h} \\ \chi_r: \text{ luminescent exciton production} \\ \phi_p: \text{ quantum efficiency of fluorescence} \\ \eta_{out}: \text{ light out-coupling efficiency} \end{cases}$$

1. Fluorescence is restricted to singlet excitons $\chi_r \sim 25\%$

Singlet
$$\frac{1}{\sqrt{2}} (\alpha(\sigma_e) \otimes \beta(\sigma_h) - \alpha(\sigma_h) \otimes \beta(\sigma_e))$$

Triplet
$$\begin{cases} \alpha(\sigma_e) \otimes \alpha(\sigma_h) \\ \beta(\sigma_e) \otimes \beta(\sigma_h) \\ \frac{1}{\sqrt{2}} (\alpha(\sigma_e) \otimes \beta(\sigma_h) + \alpha(\sigma_h) \otimes \beta(\sigma_e)) \end{cases}$$

Organia Electronics

2. Only \sim 20% of photons are coupled out of OLED devices due to TIR

Maximum Fluorescence External Quantum Efficiency on Glass ~ 5% Maximum Phosphorescence External Quantum Efficiency on Glass ~ 25%

Transparent OLED (TOLED)

- Devices can be > 90% transparent
- Thin metal or electron injection layer is capped with ITO
- Transparent cathode can also be used to prepare top emitting structures
 - OLEDs on metal sheets
 - OLEDs on Si backplanes in AMOLED displays

Bulovic, V., et al. 1996, Nature, 380, 29.

Organic Electronics Stephen R. Forrest

How We See Color: Tri-Stimulus Curves and Chromaticity

Scotopic vs. Photopic Vision Response

How things appear at night

Scotopic vision due to the rod cells – only sense luminosity (brightness) but not color

(simulation)

How things actually are at night

Photopic, or daytime vision senses color from cone cells – but not capable at sensing low light levels

Organic Electronics Stephen R. Forrest

North wall, Yosemite Valley, CA in March

Limits to color perception

orrest

Whites and the Color Gamut

- Color gamuts are geometric shapes (usually triangles) that enclose the color space available to the display
- The vertices are located at the color coordinates of the pixels that comprise the display
- Two common color gamuts
 - NTSC=National Television Standards Committee
 - sRGB= super Red Green Blue
- The arc in the center of the color space is the white, or Planckian locus
 - Defines the color temperatures of ideal black bodies that follow Planck's law of radiation
 - The isoenergetic point is (0.33,0.33)

Planck's law for emission of a black body at temperature T

$$B(\lambda,T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(hc/\lambda k_B T) - 1}$$

Pixel Arrangements for OLED Displays

10

Various Display Color Gamuts

orrest

Radiometric and Photometric Quantities

Radiometric Units				Photometric Units			
Quantity	Symbol	Expression	Unit	Quantity	Symbol	Expression	Unit
Radiant flux	$\Phi_{\rm e}$		W	Luminace flux	Φ		lm
External quantum efficiency	η_{ext}	$\eta_{\mathit{int}}\eta_{\mathit{out}}$	%	Luminous efficiency	η_L	$\frac{L}{j}$	cd/A
Power efficiency	η_P	$\frac{1}{jV}\frac{d\Phi_e}{dS} = \frac{E_e}{jV}$	%, or W/W	Luminous power efficiency	$\eta_{\scriptscriptstyle LP}$	$\frac{1}{jV}\frac{d\Phi}{dS} = \frac{E}{jV}$	lm/W
Radiant intensity	I _e	$rac{d\Phi_{_e}}{d\Omega}$	W/sr	Luminace intensity	L_{Ω}	$rac{d\Phi}{d\Omega}$	lm/sr
Radiance	L _e	$\frac{d\Phi_{_e}}{dSd\Omega\cos\theta}$	W/sr- m ²	Luminance	L	$\frac{d\Phi}{dSd\Omega\cos\theta}$	cd/m^2 = $lm/sr-m^2$
Irradiance	E _e	$rac{d\Phi_{_e}}{dS}$	W/m ²	Illuminance	Е	$\frac{d\Phi}{dS}$	lm/m ²
Radiant exitance	M _e	$\frac{d\Phi_e}{dS}$	W/m ²	Luminous exitance	М	$\frac{d\Phi}{dS}$	lm/m ²

Radiometric: Light source properties quantified using standard scientific units **Photometric:** Light source properties quantified by visual *perceptive* units

Organic Electronics Stephen R. Forrest

Light source definitions

External quantum efficiency -	No. photons viewed	_ qλF	$ q\lambda P_{meas}$	
External quantum eniciency –	No. of electrons injected	(hc) I _c	(hc) I _{OLED}	
Internal quantum efficiency =	No. photons emitted	- =qλF	$=$ $q\lambda P_{meas}$	
internal quantant enterery	No. of electrons injected	η _{out} (hc)	I _{OLED}	
Power efficiency =	Optical power emitted	P _{meas}	[W/W]	
r ower enterency –	Elect. power injected	- I _{OLED} V _{OLE}	ED	
l uminance nower efficiency =	Luminance	L _{meas}	[lm/\//]	
Luminance power emclency –	Elect. power injected	- I _{OLED} V _{OLE}	D	
Luminanco officionov — -	Luminance	-meas	[cd/A]	
Luminance enciency –	Current injected	I _{OLED}	Organic Electronics Stephen R. Forrest	
Luminance units: cd/m ² = nits;	cd=lumens/ π (for a Lamber	rtian source)		
, ,	Υ	,	- ₁₃	

 \backslash

Measuring Quantum Efficiency

External QE

Internal QE

- Measure in forward (viewing) direction only
- Mask waveguided and scattered light
- Place OLED on detector for max. accuracy

- Measure using integrating sphere
- Must correct for losses in structure

onics

Example Data Set for a PHOLED

Formation dynamics of singlets and triplets

Exciting Dopant Molecules in an OLED

Singlet and triplet formation in OLEDs

Efficiency Improves if Dopant Dispersed in Host

C. W. Tang, S. A. Van Slyke, C. H. Chen, C. H. 1989. J. Appl. Phys., 65, 3610.

- 1. Charges trapped on dye molecules
- 2. Energy transferred from host
- 3. Effect used to increase color range and efficiency of OLEDs

Energy Transfer from Host to Dopant: A Review

Förster:

Electron Exchange (Dexter):

 diffusion of excitons from donor to acceptor by simultaneous charge exchange: <u>short range</u>

Direct trapping on the lumophore

Energy transfer rates and directions

Forward (exothermic) transfer I

- •Donor energy > Acceptor energy
- $k_F \sim k_A > k_{R_i} k_D$
- •Radiative rate determined by k_A
- Route for red and green emission

Reverse (endothermic) transfer

- Acceptor energy ~ Donor energy
- $k_{F} \sim k_{R} > k_{A} > k_{D}$
- Radiative rate determined by $k_{A_{,}} k_{R}$
- Route for green and blue emissionOrganic Electronics
- •Similar to TADF, delayed fluorescence

22

orrest

Where Excitons Form in an OLED

(Closest to the point at which electrons are injected)

Dopant Emission Shifted By Polarization in the Thin Film

Solid state solvation effect (SSSE) - see Ch. 3

DCM2 (red dopant) has dipole moment 11D TPD HTL dipole moment: 1.5D DCM2 self-polarizes (red shifts) with concentration, Q

Bulovic et al., Chem. Phys. Lett., 308 317 (1999)

cs est

Another Way to Shift Color: Isomerism

N-Heterocyclic carbene (NHC) ligand for blue

Higher Energy of *fac*-isomer leads to reduced exciton confinement

Strategies for Designing Light Emitting Polymers and Small Molecules

100% Internal Efficiency via Spin-Orbit Coupling Heavy metal induced electrophosphorescence ~100% QE

Electrophosphorescent (PHOLED) Device Structure

Current Density (A/cm²)

Baldo, et al., Nature **395**, 151 (1998)

Glass

วก

750

700

Temperature Independent PL and EL

Adachi, C., et al. 2001. J. Appl. Phys., 90, 5048.

Got Color? A few metalorganic complexes emitting in the visible

Organia Electronics Stephen R. Forrest 33