Week 2-12

Thin Film Transistors 3

Self-assembled monolayers Threshold voltage drift Applications

Chapter 8.6.1, 8.7-8.9

Achieving Optimal Morphologies

- Method 1: Control during growth by VTE, OVPD, solution
- Method 2: Use Self Assembled Monolayer (SAM) functionalization to initiate growth of desired structures by vapor or solution deposition

(a)

unia Electronics

ebhen R. Forrest

Example: Octyltrichlorosilane (OTS)

Very Different Film Morphologies Achieved Depending on Surface Preparation

Organic semiconductor: VTE deposited C₆₀

ML thick C_{60} on HfO₂ 2.5µm 2.5µm (d) 50 nm C_{60} on HfO₂ 2.5µm 2.5µm Organic Electronics Stephen R. Forrest

ML thick C_{60} on ODPA on HfO₂

50 nm C_{60} on ODPA on HfO₂

Larger grains on SAMs due to improved molecular surface mobility⇒clustering

Acton et al., Appl. Phys. Lett. 93, 311 (2008)

Controlling Pentacene Channel Morphology

OVPD growth

Pentacene on SiO₂

Pentacene on OTS-SAM treated SiO₂

Functionalizing Metal Surfaces Can Reduce Contact Resistance

Large series resistance (oval region) in untreated substrate (left) Crystalline grains form on treated substrate (right) with lower $\rm R_{\rm C}$

Organic Electronics

Stephen R. Forrest

Cai et al., Langmuir, 24, 11889 (2008)

٠

٠

Contact Printing Initiated by SAM

Zschieschang, et al., 2008. Langmuir, 24 1665.

Organic Electronics Stephen R. Forrest 6

Results vs. Deposition Process

Zschieschang, et al., 2008. Langmuir, 24 1665.

Reliability

- Threshold voltage drift the primary source of circuit failure
 - Decreasing noise margin
 - Increasing leakage

Sharma, et al. Phys. Rev. B, 82 075322 (2010).

Threshold voltage drift over time

(see Ch. 6.7 & 7.8)

- Drift due to charges migrating in insulator or channel toward the interface
 - Surface traps at the channel
 - Traps within the semiconductor bulk
 - Charge (ions) drifting within the insulator

$$\Delta V_T(t) = \Delta V_T(\infty) \left(1 - \exp\left(-\frac{t}{\tau}\right)^m\right)$$

Empirical voltage drift expression: Stretched exponential

 $m = T/T_0$ for exponential trap distribution given by:

$$h_{tr}(E) = h_{tr0} \exp(-E/E_T)$$

 \Rightarrow Time constant for drift

$$\tau = (2\pi v)^{-1} \exp(E_T / k_B T)$$

Drift occurs over an extended time, and is thermally activated

Water/Proton Generation Drift Model

 $2H_2O \leftrightarrow 4H^+ + O_2 + 4e^-$

Organic Electronics Stephen R. Forrest

Mathijessen et al., Adv. Mater. 22, 5105 (2010)

Comparing Proton Model to ΔV_{T}

Example: Poly(triarylamine)

The voltage drift time constant:

- Follows the stretched exponential
- Is thermally activated with $E_T = 0.6 \text{ eV}$

Threshold voltage is fit assuming proton diffusion and drift in the field under the gate

Organic Electronics Stephen R. Forrest

Bobbert et al, Adv. Mater. 24, 1146 (2012)

Evidence for H₂O at the Insulator Interface • Change in drain current exposed to v

polyarylamine channel

- Change in drain current exposed to water shows peaks near 0°C and 205°C
- Low temperature peak due to freezing of supercooled H₂O clusters confined at the insulator interface

Threshold drifts can be reduced by encapsulation Similar stability improvements in packaged devices also observed for OLEDs and OPVs

onics

orrest

Hysteresis: Another failure mode

BG/TC: Large contact area to channel Current drawn from contact surface (arrow)

 CH_3

CH3

BG/BC: Small (edge) contact to channel Current drawn from contact edge (arrow)

Drain contact trapping

Contact only via edge of the electrodes increases the current density, resulting in defect formation and charge trapping. This induces changes in V_T and I_{DS} , depending on sweep direction (arrows)

Richards & Sirringhaus Appl. Phys. Lett., 92, 023512 (2008)

Stephen R. Forrest

Comparison of TFT Reliabilities

Caveats (and there are many):

- Devices from different labs may be based on different standards and conditions
- Device selection not necessarily based on same characteristics
- Performance can vary over a wide range in any technology

Applications must exploit advantages, and cannot be vulnerable to disadvantages

To review....

• PROs

Flexible, conformable, ultralight

Can be made over very large areas

Suitable for large scale R2R manufacture

- CONs
 - Cannot source large currents
 - Characteristics drift over long periods in operation
 - \succ Limited bandwidth (≤ 1 MHz in many cases)

Voltage driven display backplanes

• Electrophoretic displays

320 x 240 QVGA display Display pixels are voltage (not current) driven

QVGA=quarter video graphics array

G. Gelinck et al J. Soc. Info. Display, 14,113, 2006.

Optical Detector Arrays

- Organics allow for fabrication on "non developable" surfaces: i.e. surfaces that cannot ordinarily be transformed from a plane without strain or distortion
- In Ch. 5 we showed that hemispherical focal plane arrays can be formed using the elastic properties of organics
- The FPA is in a passive matrix configuration
- "Sneak currents" (right) show that leakage from unaddressed detectors (black) can add to the photocurrent from the illuminated detector (red) in a passive matrix

Xu et al. Organic Electron., 9, 1122 (2008)

Cameras vs. Eyes: A Comparison

				Fili rep arr de tra	m has been placed by flat rays of tectors and ansistors			
	t Light	rays	Film (Retina)		Functior	ר	Eye	Camera
	Object	Lens			Focal Plane		Curved	Flat
	But the eye detection system is on an approximately hemispherical surface				Lens		Single element	Multiple element
					Weight		Light	Heavy
					Field of Viev (FOV)	V	180 °	Narrow~160 º (w. distortion)
					Lens speed		Fast	Slow
					Size		~ 1 cm ³	~200 cm ³
					Weight		gm's	Kg's

Transistor addressing circuits reduce sneak currents

- One transistor address per pixel called passive pixel sensor
- Transistor used as switch to interrogate charge on photodiode in array
- Increases device dynamic range

$$DR = 20 log_{10} \left(\frac{I_{max}}{I_{min}}\right)$$
 [dB]

 I_{max} = max. photocurrent with < 1 dB distortion I_{min} = min. detectable photocurrent with S/N = 1

CS

st

Thermal Position Sensing

Ren, et al., Adv. Mater. 28, 4832 (2016)

Chemical sensing

- OTFTs have demonstrated voltage drifts due to water.
- Are there other analytes that can be sensed?
- Sensor attributes
 - Fast
 - Sensitive to small doses
 - Reversible ۲
 - <u>Specific</u>

 α -6T transistor Analyte: 1-hexanol Exposure: 5 s Recovery: 1 min

B. Crone et al., 78, 2229, (2001)

Analyte-Specific Sensors Using D_{3A} OTFT

- Highly sensitive (ppm)
- Specific to NO₂ and NO
- N2 transient provides "no analyte" background

Marinelli et al., Sens. Actuators B Chem., 140, 445 (2009)

Organic Electronics

Stephen R. Forrest

Bendable Electronics

Placing active electronics at the neutral strain point ⇒ minimal stress to circuits on bending even over sharp angles

Y = Young's modulus (measure of material stiffness)

(a) Human hair 2mm

orrest

Kaltenbrunner et al. Nat. Commun.3, 770 (2012); Nature 499, 458 (2013)

Strain can be Built into the Substrate

Organic Electronics Stephen R. Forrest

Kaltenbrunner et al. Nature 499, 458 (2013)

"Imperceptible" Electronics

Substrate foil (PEN)

Kaltenbrunner, et al., *Nature*, **499**, 458 (2013).

25

In Vivo Cardiac Monitoring

Input biosignal from the heart

Shape memory polymers

- 10⁻¹⁰

10-11

10-12

Shape memory: a deformed material "remembers" a previous configuration once a stimulus (e.g. temperature) is removed

- This property can be used to shape a circuit to conform to its surroundings (e.g. an organ or other structure)
- Often comprises a stressed bilayer
- In this example, the SMP is shaped to fit a wound without significant degradation of OTFT properties

Organic Electronics Stephen R. Forrest

Reeder et al., Adv. Mater. 26, 4967 (2014)

 $V_{GS}(V)$

10-11

10-12

10-13

0

What we learned

- OTFTs have made extraordinary progress since their first demonstration in 1986
- Their properties can be modified through chemical design
- Morphology is key to high performance
- Very small gate transistors are common in BG/TC configurations
- Very large circuits demonstrated (100's of transistors)
- Reliability depends on exposure to contaminants
- Most promising applications in sensing and medicine
- But....there is no "killer app" yet identified that can drive this technology to a commercial success

