Week 2-10

Optical Detectors 5 OPV Modules Ch. 7.9 – 7.10

Scaling to Modules

- 5x5 discrete tandem cells connected in series-parallel configuration
- Active area: 1 cm² for discrete;
 25 cm² for module

Power Limiting Resistances in the Module

• Geometric fill factor accounts for inactive regions from device interconnects: $\eta_{p,module} = GFF \cdot \eta_{P,cell}$

 $\Delta P_{sheet} = \frac{R_{\Box}}{W} \int_{0}^{L} I(V)^2 dx = \frac{R_{\Box}}{W} \int_{0}^{L} [j(V)Wx]^2 dx = I(V)^2 \left[\frac{R_{\Box}L}{3W}\right]$

Power loss from contact sheet resistance, R_{\Box}

 $R_{sheet} = \frac{R_{\Box}L}{3W}$ $R_{BA,C} = R_{\Box A,C} \frac{\Delta L}{3W}$

 $R_{c} = \rho_{c} \frac{3}{W \Lambda L}$

Total sheet resistance from contact of length, L, device width W

Bridge resistance

Contact resistance between cathode and anode

Hoppe et al. Solar Cell Mater. Solar Cells, 97, 119 (2012)

Organic Electronics Stephen R. Forrest

Multijunction Cells Limit the Effects of Resistance

The higher the voltage, The smaller the problem

 \Rightarrow Multijunction cells

Organia Electronics

orrest

Stephen R.

Efficiency of Tandem Modules in Series-Parallel Circuit

Organic Electronics Stephen R. Forrest

X. Xiao, et al., Appl. Phys. Lett., 106, 213301 (2015).

Tethered 10 x 10 OPV Module

Manufacturing of Solar Cells by R2R Methods

Printing Methods Used in R2R Solar Cell Production

Flexo printing

Laser scribing

(see Ch. 5)

Hösel et al. Adv. Sci. 1, 1400002 (2014)

Organic Electronics

Stephen R. Forrest

What we learned

- Photoconductors, photodiodes, solar cells are three species of optical detectors
 - > Detectors are fundamentally limited by a gain-bandwidth product
 - Solar cells are photodiodes operated in the 4th j-V quadrant
- Photodiodes are designed for detection in narrow spectral ranges
 - OPDs have shown high bandwidth, color agility and low noise
- Solar cells have been intensively investigated due to their
 - ➢ High efficiency (now ~18% for single junction cells)
 - ➤ Transparency in the visible but >10% efficiency via absorption in the NIR
 - Efficiency is intimately linked to the morphology and chemistry of the D-A materials forming bulk HJ
 - Efficiency of OPVs paced by advances in acceptor molecules
- OPVs have demonstrated intrinsic lifetimes of thousands of years
- OPVs thermodynamically limited to <25% due to losses in forming CT states
 - > The limit can be exceeded using multijunction cells, singlet fission
- Both solution and vapor deposited OPVs have been "manufactured" using high volume R2R deposition processes

Organic Thin Film Transistors

Thin Film Transistors 1

OTFT Basics Operating Principles

Ch. 8.1 – 8.3.3

OTFT Objectives

- Learn how they work
- Learn how they are made
- Learn about their operational reliability
- Learn what they are good for: Are they an answer waiting for a question?
 - \circ Sensing
 - Medical applications

Advantages vs. Limitations of OTFTs

• PROs

Flexible, conformable, ultralight

Can be made over very large areas

Suitable for large scale R2R manufacture

• CONs

Cannot source large currents

Characteristics drift over long periods in operation

 \succ Limited bandwidth (≤ 1 MHz in many cases)

What an OTFT looks like

- Several different configurations
 - Bottom gate, top gate, bottom SD contact, top SD contact
- Properties strongly influenced by dielectric/organic interface
- Configuration similar to inorganic TFTs
 - Metal oxide
 - a-Si
 - Etc.

Definitions of Contacts and Dimensions

Organic Electronics Stephen R. Forrest

13

Different Contact Arrangements

Organic Thin Film Transistors

First demonstrations

A. Tsumura, et al., Appl. Phys. Lett., (1986) 1210,49

G. Horowitz, et al., Solid State Commun., 72 381 (1989)

15

Equilibrium Energy Level Diagram at the Gate of the OTFT

The MIS Capacitor: Building Block of the OTFT

Organics often have little charge in the bulk of the semiconductor ⇒ no band bending
Charge drawn into channel from source to allow conduction at the insulator/org. interface

17

ctronics

Operating Regions of the Transistor

- Since charge is injected from the source, and the channel organic is rarely doped,
 - the OTFT operates in the accumulation regime
- The inversion regime is rarely relevant in OTFTs for these reasons
- The transistor channel is normally depleted at V_{GS} = 0, and hence the transistors are enhancement mode devices

Organic Electronics

orrest

How an OTFT Works: Accumulation

Charge injected from the source by a gate voltage, V_{GS} , at very low drain voltage, V_D , and hence low channel current (i.e. ohmic):

$$Q(x) = n(x)qt = C_G (V_G - V(x))$$

Charge layer thickness

But contact resistance and potential, charge trapping, grain boundaries, etc. prevent channel conduction until a <u>threshold voltage</u> V_T is reached: Sou

$$Q(x) = n(x)qt = C_G \left(V_G - V_T - V(x) \right)$$

Qave

Following Ohm's Law:

$$I_D = A\sigma F = W(n_{ave}qt)\mu \frac{V_D}{L}$$

At low voltage, conduction is ohmic \Rightarrow we can use the average channel voltage drop V_D/2. Or, in the <u>linear regime of operation</u>:

$$I_{D} = \frac{W}{L} C_{G} \mu \left(V_{G} - V_{T} - \frac{V_{D}}{2} \right) V_{D} = \frac{W}{L} C_{F} \mu \left((V_{G} - V_{T}) V_{D} - \frac{V_{D}^{2}}{2} \right)$$

In the Saturation Region

In the linear regime $(V_G - V_T >> V_D)$, we calculate the transconductance:

$$g_m = \frac{\partial I_D}{\partial V_G}\Big|_{V_D} = \frac{W}{L} C_G \mu_{lin} V_D$$

And the output conductance:

$$g_o = \frac{\partial I_D}{\partial V_D} \bigg|_{V_G} = \frac{W}{L} C_G \mu_{lin} (V_G - V_T)$$

Due to contact and other parasitic resistances, μ_{lin} gives errors, so mostly use <u>saturation characteristics</u>:

- > When $V_D = V_G V_T$, the channel **pinches off**
- → Between pinchoff point and drain, $n \rightarrow 0 \Rightarrow F \rightarrow$ large to maintain current continuity ($j = nq\mu F$)
- > No more current (except leakage) enters channel with increasing V_D , hence we are in the <u>saturation regime</u>.

Then:
$$I_D = \frac{W}{2L} C_G \mu_{sat} (V_G - V_T)^2$$

Plot of $I_D^{1/2}$ vs. V_G gives both μ_{sat} and V_T

Ideal Unipolar OTFT Characteristics

DC Characteristics of an OTFT

- Pentacene most frequently employed small molecule for OTFT
- μ_{FE} ~ 1 1.5 cm²/V-s
- DC mobility as high as 40 cm²/V-s measured in rubrene using OTFTs: is it reliable? (Takeya, et al. Appl. Phys. Lett. 90 102120 (2007))
- OTFTs measure interface conductance, not mobility.

Equating Field Effect With Bulk Mobilities

• What could go wrong?

Two μ_{FE} and V_T extracted from I_D - V_{GS} characteristics: Which is right? \Rightarrow OTFT does not follow conventional theory due to exponential distribution of states near conduction level edge

Bittle et al., Nat. Commun. 7, 10908 (2016)

Subthreshold slope

- Measure of how small a voltage swing needed to turn on a transistor
- Determines noise margin of a circuit (i.e. how easy is it for a "1" to be mistaken for a "0")

contact regions

Imperfect contacts, traps lead to injection barrier at source:

$$I_{D} = I_{D0} \exp(q |V_{GS} - V_{FB}| / nk_{B}T) = I_{D0}' \exp(q V_{GS} / nk_{B}T)$$

$$\Rightarrow S = 2.3 \frac{nk_BT}{q} \quad n = 1 \Rightarrow S = 60 \text{ mV/decade}$$

Theoretical minimum slope

A high performance OTFT

BG/TC

- *p* or *n* channel?
- L/W = 10 μm/100 μm
- Al gate
- AlO_x gate insulator, 3.6 nm thick, PVD grown coated with alkylphosphonic acid SAM

Klauk, Chem. Soc. Rev., 39, 2643 (2010)

Organic Electronics

25

orrest

OTFT Bandwidth

Small signal input (gate) current: $i_{GS} = WLC_G \frac{\partial v_{GS}}{\partial t}\Big|_{V_{DS}} = j\omega (WLC_G) v_{GS} = j2\pi f (WLC_G) v_{GS}$

Small signal output (drain) current: $i_D = g_D v_{DS} + g_m v_{GS} \Rightarrow i_D \simeq g_m v_{GS}$ since $g_D \rightarrow 0$

The maximum transistor bandwidth is reached when the current gain $\left|\frac{i_D}{i_G}\right| = 1$

Miller Capacitance and Gain

The capacitance is equal to the input (C_{GS}) in parallel with the output capacitance (C_{GD}) "amplified" by the circuit gain, A_v , that is:

$$C_{G} = C_{GS} + C_{GD} \left(1 + A_{v} \right)$$

where

$$A_{v} = \frac{\partial v_{DS}}{\partial v_{GS}} = \frac{\partial v_{DS}}{\partial i_{D}} \frac{\partial i_{D}}{\partial v_{GS}} = \left(R_{L} \| \frac{1}{g'_{D}}\right) g_{n}$$

$$C_{M} = C_{GD} \left(1 + A_{v} \right)$$

This amplified output capacitance is called the "Miller capacitance" or the "Miller effect"

But the output conductance is small: $R_L \parallel \frac{1}{g'_D} \rightarrow R_L$

From these expressions, we get the cutoff, or transfer frequency:

$$f_T = \frac{g_m}{2\pi W L C_G} = \frac{g_m}{2\pi W L \left(C_{GS} + C_M\right)}$$

Capacitance and Frequency Response

Sources of parasitic capacitances

orrest

Combining Effects of Resistance and Capacitance

The transconductance and output conductances are reduced by drain and source contact resistances

$$g'_{m} = \frac{g_{m}}{1 + r_{s}g_{m}}$$
 $g'_{D} = \frac{g_{D}}{1 + (r_{s} + r_{D})g_{D}}$

As is the frequency response frequency response

$$f_{T} = \frac{\mu_{FE0} \left(V_{GS} - V_{T} \right)}{2\pi L \left(L + \Delta L \right)} \left[\frac{1}{1 + W \mu_{FE0} C_{G} \left(V_{GS} - V_{T} \right) R_{C} / L} \right]$$

Where the total contact resistance is the series contributions from S and D: $R_C = r_S + r_D$

High Bandwidth OTFTs

Kitamura & Arakawa 2009. Appl. Phys. Lett., 95, 023503.