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Organic Electronics: Foundations 
to Applications

This course is divided into two semesters with the following 
objectives:

• Semester 1-Foundations topics:  Crystal structure and 
binding, Optical and electronic properties of organics, and 
materials growth and patterning. This semester covers 
material in Chapters 1-5.

• Semester 2-Applications topics: Light emitters, light 
detectors, transistors (including phototransistors), and 
selected other topics. This semester covers material in 
Chapters 1-9.
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Week 2-1

Review of Semester 1: Foundations

Light Emitters 1
OLED Basics

Displays
Ch. 6.1, 6.4
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Organic Materials are Interesting 
Because… 

• They have properties that bridge between their individual molecular 

and collective (solid state) properties

• They provide deep insights into how the properties of molecules 

transform into band structure (via tight binding), conductivity and 

excitonic states

• Almost all physical properties result from electrostatic, van der Waals 

bonds (vs. chemical bonds) between molecules in the solid state

• Disorder governs characteristics in the solid state

• Their mechanical fragility leads to film growth and patterning that 

differ from more robust, inorganic semiconductors
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Band Structure is Replaced by Energy Levels

Conventional
Semiconductor

Organic
Semiconductor

LUMO: Lowest unoccupied 
molecular orbital

HOMO: Highest occupied 
molecular orbital

It is essential to keep your terminology clear: Band gaps exist in inorganics, energy gaps 
without extended bands are the rule (but with important exceptions) in organics.4
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This Chart Explains Why Organic 
Semiconductors are Unique
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Property Organics Inorganics

Bonding van der Waals Covalent/Ionic

Charge Transport Polaron Hopping Band Transport

Mobility ~1 cm2/V·s ~1000 cm2/V·s

Absorption 105-106 cm-1 104-105 cm-1

Excitons Frenkel Wannier-Mott

Binding Energy ~500-800 meV ~10-100 meV

Exciton Radius ~10 Å ~100 Å
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Review of optical and electronic 
properties
• What makes organics interesting and unique and 

adapted to device applications?
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van der Waals bonding
• Purely electrostatic instantaneous induced dipole-induced dipole interaction 

between π-systems of nearby molecules.
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MOLECULAR PICTURE

GROUND STATE         FRENKEL EXCITON

S1

S0

SEMICONDUCTOR PICTURE

CONDUCTION
BAND

VALENCE
BAND

Wannier exciton
Inorganic semiconductors

Frenkel exciton
Organic materials

Dielectric constant ~15
binding energy ~10meV (unstable at RT)

radius ~100Å

Dielectric constant ~2
binding energy ~1eV (stable at RT)

radius ~10Å

treat excitons 
as chargeless

particles
capable of 
diffusion.

Transport of 
energy (not 

charge)

Charge Transfer (CT) 
Exciton

(bridge between W and F)

Organic Semiconductors are Excitonic Materials
Inorganics Organics
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Band Structure is Replaced by Energy Levels

Conventional
Semiconductor

Organic
Semiconductor

LUMO: Lowest unoccupied 
molecular orbital

HOMO: Highest occupied 
molecular orbital

It is essential to keep your terminology clear: Band gaps exist in inorganics, energy gaps 
without extended bands are the rule (but with important exceptions) in organics.9
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Triplet
S=1

ms=±1, 0

Singlet and triplet states

(b)$

S=1$
mS=1$

S$

(a)$

S=0$
mS=0$

ms=)½$

z$ms=½$

S=1$
mS=0$

S=0$
mS=)1$

Singlet
S=0

ms= 0

Spatially symm. Spin antisymm.

Pauli Exclusion Principle: Total wavefunctions must be antisymmetric

In phase180o out of phase
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Understanding molecular spectra
Statistics of vibronic state filling:
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Jablonski Diagrams: 
Life Histories of Excitons
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Kasha’s rule
The radiative transition from
a given spin manifold occurs
from the lowest excited 
state.
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GROUND STATE
spin anti-symmetric

Singlet
spin anti-symmetric

Triplet
spin symmetric

Relaxation allowed
fast, efficient
ʻFluorescenceʼ

25% 75%

Phosphorescence enhanced by 
mixing S+T eg: spin-orbit 

coupling via heavy metal atom

100% Internal Efficiency via Spin-Orbit Coupling 
Heavy metal induced electrophosphorescence ~100% QE

Relaxation disallowed
slow, inefficient
ʻPhosphorescenceʼ

Relaxation allowed
not so slow, efficient
ʻPhosphorescenceʼ

- + +

Baldo, et al., Nature 395, 151 (1998)

100%

x

MOLECULAR EXCITED STATES
AFTER ELECTRICAL EXCITATION
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Contact'zone'
(Exchange:'Dexter)'

Near'field'zone'
(FRET:'Förster)'

Intermediate''
zone'

Far'field'zone'
(Radia?ve:'1/r)'

Energy Transfer

• If excitons are mobile in the solid, they must move from molecule to molecule
² The microscopic “hopping” between neighboring molecules = energy transfer

Different transfer ranges accessed by different processes
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Energy Gap Law
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• The larger the energy gap, the lower the probability for non-radiative recombination. 
⇒ As the energy gap of a molecular species decreases, radiative transitions 

have a higher probability for non-radiative decay. 

 
kif = Aexp −γ Eg / !ω p( )

γ = log
Eg

ΩEp

⎛

⎝⎜
⎞

⎠⎟
−1

Ω= number of modes contributing to the 
maximum phonon energy,
= ½ the Stokes shift.
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Shi, S., et al.  2019. J. Am. Chem. Soc., 141(8), pp.3576-3588.
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Förster:
- resonant dipole-dipole coupling
- donor and acceptor transitions must be allowed

Acceptor
(dye )

Donor

up to ~ 100Å

Donor* Acceptor Donor Acceptor*

Electron Exchange (Dexter):
- diffusion of excitons from donor to acceptor 

by simultaneous charge exchange: short range

Acceptor
(dye)

Donor

~ 10ÅDonor* Acceptor Donor Acceptor*

spin is conserved: e.g. singlet-singlet or triplet-triplet

Energy Transfer from Host to Dopant: A Review
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Modes of Conduction
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(a)	 ECBM	

(b)	 (c)	

ELUMO	

EEA	
EIP	

EVAC	

(a)	 ECBM	

(b)	 (c)	

ELUMO	

EEA	
EIP	

EVAC	

Band transport

Hopping and tunneling transport

• Coherent
• Charge mean free path λ>>a
•

BW

  BW > kBT ,  !ω 0

Molecule

• Incoherent (each step independent of previous)
• Charge mean free path λ~a
• Tunneling between states of equal energy is band-like
•   BW < kBT ,  !ω 0

EB
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Transport Bands in Organics
• Tight binding approximation is useful due to importance of only nearest 

neighbor interactions

• Recall case of dimers and larger aggregates on exciton spectrum. Close 
proximity of neighbors results in:

• Coulomb repulsion
• Pauli exclusion
Ø Splitting leads to broadening of discrete energies into bands
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Light Emitters: Objectives

• Learn about vision: what makes a good display or 
lighting fixture?
• Gain a knowledge of how fundamental properties of 

organics leads to two important light emitting device 
types
• OLEDs
• Organic lasers

• Learn about challenges yet to be met before OLEDs 
completely dominate the display market
• Learn about the challenges for lighting and lasing
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OLEDs
• Basic concepts
• Displays and Lighting
• R-G-B pixellation
• WOLEDs
• TOLEDs

• Getting light out
• Intensity roll-off and annihilation
• Device reliability
• Lasing

20
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2010: Galaxy Phones 
Phosphorescent R,G
>2 Billion sold ?! 

2014-15: 65” and 77” OLED TVs
2016: 4K OLED TV

2012: LG 55” & Samsung
Phosphorescent TV, $1500
2017: iPhone X

$7.2

$10.8
$12.7

$16.2
$18.6

$20.6

$22.8
$24.6

$25.8
$27.0

$0

$5

$10

$15

$20

$25

$30

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

$ 
bi
lli
on

s

Mobile TV Tablet / PC Other

Source:  DisplaySearch, Q2’14

Mobile Growth Tablet /PC Growth TV Growth

AMOLED Display Market Potential

9

Panasonic, Sony, Toshiba….(2017)

LG

AMOLED Displays: Driving the Technology 
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The Future is Flexible
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Virtual and Augmented Reality Enabled by OLEDs

Requirements
Fast
Bright
Ultrahigh resolution

23
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White Lighting is Rapidly Becoming a Reality
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Organic Light Emitting Diode
(OLED)

+

electrons and holes
form excitons

(bound e--h+ pairs)

some excitons radiate
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Tang & van Slyke, Appl. Phys. Lett., 51, 913 (1987)

hEQE = 1%
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PPV
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Recombination zone not well-defined

First Polymer OLED

Burroughes, et al. 1990. Nature, 347, 539.
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Benefits of OLEDs

• Can be prepared on any substrate - active materials are amorphous

• Low cost materials and fabrication methods, scalable to large area

• Readily tuned color and electronic properties via chemistry

• Can be transparent when off

• Device characteristics
• Efficiency ~ 100% demonstrated, white > 120 lm/W
• > 1,000,000 hour (100 years) lifetime
• Can be very bright: 106 cd/m2, CRT = 100 cd/m2, fluorescent panel = 800 cd/m2

• Turn-on voltages as low as 3 Volts

+

metal cathode

(-)

(+)

substrate

transparent conductor

Organic layers, total 
thickness < 200 nm
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OLED vs. Liquid Crystal Displays (LCDs)

28

Color Mixing

LCD OLED
Plasma
CRT

Display Technologies
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Color
filters

CF glass

TFT glass

Front Polarizer

Rear Polarizer

Backlight

LC
CF

LCD/LED Displays
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Front Polarizer

Cover glass

TFT glass
OLED

WOLED
panel

WOLED
CF

Front Polarizer
Cover glass

TFT glass

Two Types of OLED Displays

• RGB pixels
• Top emitting
• Dominates mobile (Samsung)

• WOLED pixels + Color filters
• Top emitting
• Dominates TVs (LG)
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