Week 15

Review

Organic & Inorganic Semiconductors: What makes them different?

Property	Organics	Inorganics
Bonding	van der Waals	Covalent/Ionic
Charge Transport	Polaron Hopping	Band Transport
Mobility	~1 cm²/V⋅s	~1000 cm²/V⋅s
Absorption	10 ⁵ -10 ⁶ cm ⁻¹	10 ⁴ -10 ⁵ cm ⁻¹
Excitons	Frenkel	Wannier-Mott
Binding Energy	~500-800 meV	~10-100 meV
Exciton Radius	~10 Å	~100 Å

Organic Electronics Stephen R. Forrest

van der Waals bonding

Purely electrostatic *instantaneous* induced dipole-induced dipole interaction between π -systems of nearby molecules.

Organia Electronics Stephen R. Forrest

 $U(r_{12}) = -\frac{A_{disp}}{r_{12}^{6}}$: Dispersion interaction $U(r) = 4\varepsilon \left| \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right|$: Lennard-Jones 6-12 potential (includes core repulsion)

Organic Semiconductors are Excitonic Materials

Band Structure is Replaced by Energy Levels

It is <u>essential</u> to keep your terminology clear: **Band gaps** exist in inorganics, <u>energy gaps</u> without extended bands are the rule (but with important exceptions) in organics⁵.

Singlet and triplet states

and

Pauli Exclusion Principle: Total wavefunctions must be antisymmetric

Understanding molecular spectra

Jablonski Diagrams: Life Histories of Excitons

Energy Transfer

If excitons are mobile in the solid, they must move from molecule to molecule
 The microscopic "hopping" between neighboring molecules = energy transfer

Different transfer ranges accessed by different processes

Shi, S., et al. 2019. J. Am. Chem. Soc., 141(8), pp.3576-3588.

Energy Transfer from Host to Dopant: A Review

Förster:

Electron Exchange (Dexter):

 diffusion of excitons from donor to acceptor by simultaneous charge exchange: <u>short range</u>

Modes of Conduction

- Coherent
- Charge mean free path $\lambda >> a$
- $BW > k_B T$, $\hbar \omega_0$

Hopping and tunneling transport

- Incoherent (each step independent of previous)
- Charge mean free path $\lambda \sim a$
- Tunneling between states of equal energy is band-like

•
$$BW < k_B T$$
, $\hbar \omega_0$

Transport Bands in Organics

- **Tight binding** approximation is useful due to importance of only nearest neighbor interactions
- Recall case of dimers and larger aggregates on exciton spectrum. Close proximity of neighbors results in:
 - Coulomb repulsion
 - Pauli exclusion
 - Splitting leads to broadening of discrete energies into bands

Tang & van Slyke, Appl. Phys. Lett., **51**, 913 (1987)

OLED efficiency

$$\eta_{ext} = \eta_{int} \eta_{out} = \chi_r \phi_p \eta_{out}$$

$$\gamma: \text{ charge carrier balance factor ratio of e/h} \\ \chi_r: \text{ luminescent exciton production}$$

$$\phi_p: \text{ quantum efficiency of fluorescence} \\ \eta_{out}: \text{ light out-coupling efficiency}$$

1. Fluorescence is restricted to singlet excitons $\chi_r \sim 25\%$

Singlet
$$\frac{1}{\sqrt{2}} (\alpha(\sigma_{e}) \otimes \beta(\sigma_{h}) - \alpha(\sigma_{h}) \otimes \beta(\sigma_{e}))$$

Triplet
$$\begin{cases} \alpha(\sigma_{e}) \otimes \alpha(\sigma_{h}) \\ \beta(\sigma_{e}) \otimes \beta(\sigma_{h}) \\ \frac{1}{\sqrt{2}} (\alpha(\sigma_{e}) \otimes \beta(\sigma_{h}) + \alpha(\sigma_{h}) \otimes \beta(\sigma_{e})) \end{cases}$$

Organia Electronics

2. Only \sim 20% of photons are coupled out of OLED devices due to TIR

Maximum Fluorescence External Quantum Efficiency on Glass ~ 5% Maximum Phosphorescence External Quantum Efficiency on Glass ~ 25%

Efficiency Improves if Dopant Dispersed in Host

- 1. Charges trapped on dye molecules
- 2. Energy transferred from host
- 3. Effect used to increase color range and efficiency of OLEDs

C. W. Tang, et al. 1989. J. Appl. Phys., 65, 3610.

Lighting Comparisons

	Incandescent	Fluorescent	LEDs	OLEDs
Efficacy	17 lm/W	100 lm/W	80-90 lm/W – White 65 lm/W – warm white 240 lm/W-lab demo	150 lm/W Lab demos
CRI	100	80-85	80 – white 90 – warm white	Up to 95
Form Factor	Heat generating	Long or compact gas filled glass tube	Point source high intensity lamp	Large area thin diffuse source. Flexible, transparent
Safety concerns	Very hot	Contains mercury	Very hot in operation	None to date
LT70 (K hours)	1	20	50	30
Dimmable	Yes, but much lower efficacy	Yes, efficiency decreases	Yes, efficiency increases	Yes, efficiency increases
Noise	No	Yes	No	No
Switching lifetime	Poor	Poor	Excellent	Excellent Organic E
Color Tunable	No	No	Yes	Yes

OLEDs for White Light Generation

Separating dopants into bands

- Prevents energy transfer between dopants.
- Control relative emission intensity of dopants by:
 - Varying doping concentrations
 - Adjusting the thickness of bands
 - Inserting blocking layers
 - Adjusting the position of the dopants relative to the HTL

Why does it work?

- Triplets can diffuse much further than singlets (measured ~1000Å)
- Good control over diffusion of excitons using blocking layers and layer thickness

OLEDs: Not All Light Goes to the Viewer

Optical paths outcoupled with hemispherical lens

Photodetectors

- Transducers that convert light to another energy form (in our case, electricity)
- Types
 - Photoconductors
 - Photodiodes
 - These are operated in the reverse-biased (photodetection) or photovoltaic mode
- Properties
 - Sensitivity & Efficiency
 - Spectral range
 - Bandwidth
 - Dynamic range

Photoconductors

- Earliest organic electronic devices
- Simplest (no HJs needed)

When illuminated, conductivity changes

$$\sigma = q\left(\mu_n n + \mu_p p\right) \begin{bmatrix} p = p_{ph} + p_0 \\ n = n_{ph} + n_0 \end{bmatrix} \begin{bmatrix} n_{ph} = p_{ph} \\ n = n_{ph} + n_0 \end{bmatrix}$$

Without background doping:
$$n_0 = p_0 = n_i$$

Photoinduced Charge-Transfer at a Type II HJ

The Basis of OPV Operation

Processes occuring at a Donor-Acceptor heterojunction

Basic OPD/OPV structure

Organic Electronics Stephen R. Forrest 25

Heterojunction Morphologies Breaking the tradeoff between L_D and α with BHJs

Bulk HJ

Mixed HJ

Annealed BHJ

Controlled BHJ

$$\eta_P = \frac{FF \cdot I_{SC} \cdot V_{OC}}{P_{inc}}$$

Understanding Solar Cell Efficiency Limits

Organic Electronics Stephen R. Forrest 28

Organic Solar Cell Challenges

- High efficiency (>17%)
- Large Module Size
- High Reliability (>20 years)
- Low Production Cost (<\$0.50/Watt)

Getting to High Efficiency: The Double Heterojunction

Problem

(Tang cell: 1%)

cathode metal diffusion
deposition damage
exciton quenching
vanishing optical field

electrical shorts

Introduce 'Exciton Blocking Layer' (EBL) to:

- confine excitons to active region
- separates active layer from metal
- act as a buffer to damage
- EBL thickness determined by depth of damage (if too thick, EBL is insulating)

Organic Electronics

Quantifying OPV Lifetimes

What an OTFT looks like

- Several different configurations
 - Bottom gate, top gate, bottom SD contact, top SD contact
- Properties strongly influenced by dielectric/organic interface
- Configuration similar to inorganic TFTs
 - Metal oxide
 - a-Si
 - Etc.

Definitions of Contacts and Dimensions

OTFT applications must exploit advantages, and cannot be vulnerable to disadvantages

• PROs

Flexible, conformable, ultralight

Can be made over very large areas

Suitable for large scale R2R manufacture

• CONs

Cannot source large currents

Characteristics drift over long periods in operation

Limited bandwidth (< 1 MHz in many cases)</p>

Organic Materials are Interesting for Electronics Because...

- They are *potentially* inexpensive
- Their properties can be "easily" modified through chemical synthesis
- They can be deposited on large area, flexible and/or conformable substrates
- They can be very lightweight
- They have excellent optical properties
- They can be manufactured "by the kilometer"

But remember.....

If you are competing with silicon, go home. You've already los

What organic electronics are good for

- Low cost
- Large area
- Flexible
- Conformable/Stretchable
- Light weight
- <u>Opto</u>electronics

