Week 14

Thin Film Transistors 2

Ambipolar and Other Transistor Architectures Morphology Reliability Applications

Organic Electronics Stephen R. Forrest

Chapter 8.3.2-8.4, 8.6-8.9

Ambipolar OTFTs

- Channel capable of supporting both electron and hole transport
- Advantage: Complementary logic possible with a single structure

Strategies for achieving bipolar action:

- Use material with both high μ_{FEn} and μ_{FEp} with contacts in the middle of the energy gap (i.e. use ambipolar conducting organics)
- Use a bilayer, one with higher electron vs. hole mobility and vice versa
- Use a blend of electron and hole transporting materials

Ambipolar transfer characteristics

Example: $V_{Tp} < V_{Tn}$

Linear regime

$$I_{D} = \frac{WC_{i}}{L} \mu_{FEn} \left(V_{GS} - V_{Tn} - \frac{V_{DS}}{2} \right) V_{DS}$$
$$\begin{pmatrix} 0 \le V_{DS} \le V_{DSsat} \\ V_{GS} > V_{Tn} \end{pmatrix}$$

Saturation regime

$$I_D = \frac{WC_i}{2L} \mu_{FEn} \left(V_{GS} - V_{Tn} \right)^2$$

 $\left(\begin{array}{c} V_{DS} \geq V_{GS} - V_{Tn} \\ V_{DS} \leq V_{GS} - V_{Tp} \end{array}\right)$

Ambipolar (quadratic) regime

$$I_{D} = \frac{WC_{i}}{2L} \left\{ \mu_{FEn} \left(V_{GS} - V_{Tn} \right)^{2} + \mu_{FEp} \left(V_{DS} - V_{GS} + V_{Tp} \right)^{2} \right\}$$
$$V_{DS} \ge V_{GS} - V_{Tn} \ge V_{GS}^{2} - V_{Tn}^{2}$$

Bilayer ambipolar OTFT

Wang et al., Appl. Phys. Lett. 88, 133508 (2006)

OTFT Bandwidth

Small signal input (gate) current: $i_{GS} = WLC_G \frac{\partial v_{GS}}{\partial t}\Big|_{v_{DS}} = j\omega (WLC_G) v_{GS} = j2\pi f (WLC_G) v_{GS}$

Small signal output (drain) current: $i_D \simeq g_m v_{GS}$

The maximum transistor bandwidth is reached when the current gain $\left|\frac{i_D}{i_G}\right| = 1$

From these expressions, we get the cutoff, or transfer frequency:

$$f_T = \frac{g_m}{2\pi WLC_G} \Rightarrow \frac{g_m}{2\pi WL(C_{GS} + C_M)}$$

 C_M = Miller capacitance

Contact Resistance Limits OTFT Performance

Example: High Bandwidth OTFT

Performance has come a long way

7 stage ring oscillator

Smith et al., Appl. Phys. Lett., 93, 253301 (2008)

Oscillation frequency a function of the delay per gate

Zschieschang, et al., 2013. *Organic Electronics,* 14, 1516.

Dual gate transistors

- Useful for adjusting $V_{\scriptscriptstyle T}$ due to extra bias control of the second (bottom) gate
- In conventional CMOS technology, this is the "body potential"
- Important for controlling large ICs

Spijkman et al. Appl. Phys. Lett., 92 143304 (2008)

Dual gate control

Photograph of a 64-bit RFID transponder operating at 4.3 kb/s using dual gate inverter logic.

Myny et al. IEEE J. Sol. State Circuits, 46, 1223 (2011)

Improved noise margin Control of circuit gain

Spijkman et al. Appl. Phys. Lett., 92 143304 (2008)

Other Device Types V-gate transistor

Knife edge cuts through contact layers

Channel and gate insulator deposited

Vertical geometries reduce channel transit times \Rightarrow higher bandwidth Can be more compact than lateral OTFTs Can run in vertical mode (S=E₁, D=E₂) or horizontal mode (S=E₁, D=E₃) Stutzman, et al., Science, 299, 1881 (2003)

Other Device Types Permeable gate transistor

Permeable source V-FET

Permeable Base transistor

Gate (removed from S by gate dielectric) controls S-D current by attraction or repulsion of charge

Ben-Sasson et al., (2009). Appl. Phys. Lett., 95, 302.

Other Device Types Split gate transistor

- When gates shorted: ambipolar
- Otherwise, operated as p or n-channel

Highest mobilities when π-stacking is in the transistor plane

Different, common organic stacking motifs (see Chapter 2)

Methods for Orienting the Channel Semiconductor

Liu, et al., Z. (2009) Adv. Materials, 21, 1217

Achieving Optimal Morphologies

- Method 1: Control during growth by VTE, OVPD, solution
- Method 2: Use Self Assembled Monolayer (SAM) functionalization to initiate growth of desired structures by vapor or solution deposition

(a)

ania Electronics

ebhen R. Forrest

Example: Octyltrichlorosilane (OTS)¹⁶

Si/SiO,

Contact Printing Initiated by SAM

Zschieschang, et al., 2008. Langmuir, 24 1665.

evaporate pentacene

or F16 CuPc

evaporate Au S/D contacts

Reliability

- Threshold voltage drift the primary source of circuit failure
 - Decreasing noise margin
 - Increasing leakage

Sharma, et al. Phys. Rev. B, 82 075322 (2010).

18

Threshold voltage drift over time

(see Ch. 6.7 & 7.8)

- Drift due to charges migrating in insulator or channel toward the interface
 - Surface traps at the channel
 - Traps within the semiconductor bulk
 - Charge (ions) drifting within the insulator

$$\Delta V_T(t) = \Delta V_T(\infty) \left(1 - \exp\left(-\frac{t}{\tau}\right)^m\right)$$

Empirical voltage drift expression: Stretched exponential

 $m = T/T_0$ for exponential trap distribution given by:

$$h_{tr}(E) = h_{tr0} \exp(-E/E_T)$$

 \Rightarrow Time constant for drift

$$\tau = (2\pi v)^{-1} \exp(E_T / k_B T)$$

Drift occurs over an extended time, and is thermally activated

Bobbert et al, Adv. Mater. 24, 1146 (2012)

Mathijessen et al., Adv. Mater. 22, 5105 (2010)

Hysteresis: Another failure mode

BG/TC: Large contact area to channel Current drawn from contact surface (arrow)

 CH_3

CH3

BG/BC: Small (edge) contact to channel Current drawn from contact edge (arrow)

Stephen R. Forrest

21

Drain contact trapping

Contact only via edge of the electrodes increases the current density, resulting in defect formation and charge trapping. This induces changes in V_T and I_{DS} , depending on sweep direction (arrows)

Richards & Sirringhaus Appl. Phys. Lett., 92, 023512 (2008)

Comparison of TFT Reliabilities

Caveats (and there are many):

- Devices from different labs may be based on different standards and conditions
- Device selection not necessarily based on same characteristics
- Performance can vary over a wide range in any technology

Applications must exploit advantages, and cannot be vulnerable to disadvantages

To review....

• PROs

Flexible, conformable, ultralight

Can be made over very large areas

Suitable for large scale R2R manufacture

- CONs
 - Cannot source large currents
 - Characteristics drift over long periods in operation
 - \succ Limited bandwidth (≤ 1 MHz in many cases)

Voltage driven display backplanes

• Electrophoretic displays

320 x 240 QVGA display Display pixels are voltage (not current) driven

QVGA=quarter video graphics array

G. Gelinck et al J. Soc. Info. Display, 14,113, 2006,

Thermal Position Sensing

Ren, et al., Adv. Mater. 28, 4832 (2016)

Chemical sensing

- OTFTs have demonstrated voltage drifts due to water.
- Are there other analytes that can be sensed?
- Sensor attributes
 - Fast
 - Sensitive to small doses
 - Reversible

 α -6T transistor Analyte: 1-hexanol Exposure: 5 s Recovery: 1 min

B. Crone et al., 78, 2229, (2001)

Bendable Electronics

Placing active electronics at the neutral strain point \Rightarrow minimal stress to circuits on bending even over sharp angles

Y = Young's modulus (measure of material stiffness)

Kaltenbrunner et al. Nat. Commun.3, 770 (2012); Nature 499, 458 (2013)

(a)

(b)

Humar

2mm

orrest

"Imperceptible" Electronics

Substrate foil (PEN)

Kaltenbrunner, et al., *Nature*, **499**, 458 (2013).

28

In Vivo Cardiac Monitoring

Input biosignal from the heart

What we learned

- OTFTs have made extraordinary progress since their first demonstration in 1986
- Their properties can be modified through chemical design
- Morphology is key to high performance
- Very small gate transistors are common in BG/TC configurations
- Very large circuits demonstrated (100's of transistors)
- Reliability depends on exposure to contaminants
- Most promising applications in sensing and medicine
- But....there is no "killer app" yet identified that can drive this technology to a commercial success

