Week 12

Light Detectors 2

Measuring solar cell efficiency OPV Architectures, Morphologies and Materials Transparency

Chapter 7.3.3-7.4.3

Understanding Solar Cell Efficiency Limits

Organic Electronics Stephen R. Forrest 2

Annual Solar Insolation: US

Measuring *Single Junction* Solar Cell Efficiency

Challenges:

- The laboratory spectrum (E_{REF}) is not identically equal to the reference solar spectrum (AM1.5G): It is only simulated (E_{SIM})
- Reference detector spectral response (S_{REF}) not identical to the test solar cell (S_T)

$$M = \frac{j_{SIM}^{T}}{j_{REF}^{T}} \frac{j_{REF}^{REF}}{j_{SIM}^{S}} = \frac{j_{A_{1}}^{T}}{j_{A_{2}}^{T}} \frac{j_{A_{1}}^{REF}}{j_{A_{2}}^{T}} = \frac{j_{A_{1}}^{T}}{j_{A_{2}}^{T}} \frac{j_{A_{1}}^{REF}}{j_{A_{2}}^{T}} = \frac{j_{A_{1}}^{T}}{j_{A_{2}}^{T}} \frac{j_{A_{1}}^{T}}{j_{A_{2}}^{T}} \frac{j_{A_{1}}^{T}}{j_{A_{2}}^{T}} \frac{j_{A_{1}}^{T}}{j_{A_{2}}^{T}} \frac{j_{A_{1}}^{T}}{j_{A_{1}}^{T}} \frac{j_{A_{1}}^{T}}{j_{$$

Organic Solar Cell Challenges

- High efficiency (>17%)
- Large Module Size
- High Reliability (>20 years)
- Low Production Cost (<\$0.50/Watt)

Getting to High Efficiency: The Double Heterojunction

Problem

(Tang cell: 1%)

cathode metal diffusion
deposition damage
exciton quenching
vanishing optical field

electrical shorts

Introduce 'Exciton Blocking Layer' (EBL) to:

- confine excitons to active region
- separates active layer from metal
- act as a buffer to damage
- EBL thickness determined by depth of damage (if too thick, EBL is insulating)

Organic Electronics

High efficiency via increased exciton diffusion length: Introduction of fullerenes acceptors

Species of Exciton Blockers

Electron Filtering Buffer Layer

9

C₆₀:Bphen Electron Filtering Blockers

The central importance of morphology

From ideal diode theory

- PP recombination ⇒Reverse Slope
- Best morphologies limit k_{PPr} at interface:
 - Steric hindrance
 - Disorder at interfaces/order in the bulk

Organia Electronics Stephen R. orrest

Open-circuit voltage in OPVs

$$qV_{OC} = \Delta E_{HL} - nk_BT \ln \left[\frac{k_{PPr} k_{rec} N_L N_H}{k_{PPd} J_X / \alpha_0} \right]^*$$

- Material choice determines:
 ▷ ΔE_{HL} (HOMO-LUMO Gap)
 ▷ Steric hindrance (MO overlap)
- Device processing/morphology can limit V_{oc} losses:
 - $> k_{rec}$ (PP formation)
 - $\gg k_{PPr}$ (PP recombination)

Organic Electronics Stephen R. Forrest

Squaraine/Fullerene Solar Cells

Controlling k_{ppd} via morphology

- Squaraines:
 - Very large absorption coefficient.
 - Favorable HOMO/LUMO energies.
 - Large V_{OC}.
 - Excellent transport.
 - Simple synthesis.
 - Must be solution processed.
- Bilayer devices:
 - Simplicity allows study of fundamental processes.

DPSQ Device Structure

SVA Pre-C₆₀

Devices SVA Post-C₆₀

- SVA post-C₆₀

– J_{SC} û25%.

- No loss in V_{oc}
 - k_{PPr} unchanged.

Process	J _{sc} [mA	V _{OC}	FF	η _P
	cm⁻²]	[V]	[%]	[%]
As Cast	5.3±0.3	0.94	73	3.6±0.2
Pre-C ₆₀	5.6±0.3	0.86	70	3.4±0.2
Post-C ₆₀	7.0±0.4	0.96	71	4.8±0.3
				16

Achieving the Ideal Morphology

C ₆₀ DPSQ			
	As Cast	Pre C ₆₀	Post C ₆₀
Bulk DPSQ	Amorphous	Ordered	Mod. Order
Bulk C ₆₀	Weak order	Ordered	Weak Order
Interface	Disordered	Ordered	Disordered
Surface	Smooth	Rough	Smooth
k _{PPr}	Low	High	Low
V _{oc}	High	Low	High
J _{SC}	Low	Moderate	High

onics orrest

J. D. Zimmerman, et al. Nano Lett. (2012)

Morphology vs. V_{OC}

$$\begin{aligned} qV_{OC} = \Delta E_{HL} - nk_BT \ln\left[\frac{k_{PPr}}{k_{PPd}}\frac{k_{rec}N_LN_H}{J_X/\alpha_0}\right] \\ k_{rec} = \gamma = \frac{q}{\varepsilon}(\mu_e + \mu_h) \end{aligned}$$

- Worst case scenario: perfectly ordered crystalline interface and bulk, Face-on .
 - High k_{PPr} and k_{rec}
- Better Scenario I: Perfectly crystalline and end-on orientation
- Even Better Scenario II: crystalline bulk, intermixed interface
 - Poor coupling between like-molecules (C₆₀-C₆₀ and SQ-SQ) reduces PP formation (k_{rec}) probability.

Increasing solar coverage: Exciton Cascades

Schlenker, et al., Chem. Mater., 23, 4132 (2011).

Organic Electronics Stephen R. Forrest

High Efficiency Donor Cascade Device

Ternary BHJs Increase Solar Coverage

Features of ternary blends:

- V_{oc} of the ternary lies between the extremes of the two subcell junctions
- Materials chosen to cover solar spectrum
- Can be DA₁A₂ or AD₁D₂ junctions
- Morphology is key
- Probably more than one process governs performance
- Molecular alloy formation unlikely

Example DA₁A₂ ternary BHJ

PBDB-T

Me0

BisPC₇₁BM

D:A ₁ :A ₂ ratio	<i>V_{OC}</i> (V)	$j_{SC}^{(a)}$ (mA/cm ²	FF	$\eta_P(\max)$ (%)	η_P (ave) ^(b)
)			(%)
1:1:0	0.937	16.7	0.69	10.80	10.45
1:1:0.2	0.952	17.4	0.74	12.20	11.75
1:0:1	1.02	10.6	0.58	6.25	5.86

Cell area = 4 mm².
Sample size = 100 diodes

Exciton blocker

W. Zhao, et al., Advanced Materials, 29, 2, 2017.

Bi-ternary OPV

Intermixing of two donors creates continuous hole and electron conduction

Cell ^(a)	V _{oc} (V)	$j_{SC}^{(b)}$ (mA/cm ²)	FF	$\eta_P(\max) \ (\%)$	$\eta_P (ext{ave})^{(ext{c})} \ (\%)$
BHJ1	0.81	18.5	0.70	10.5	10.3
BHJ2	0.69	7.4	0.71	3.6	3.5
BHJ1/2	0.77	23.8	0.67	12.3	11.9

J. Huang, Advanced Materials, 29, 1606729, 2017.

. .

. . .

Wavelength-selective Absorption Can Lead to Semitransparent OPVs

Power generating windows (transparent in the visible, absorbing in the NIR) are a major opportunity unique to OPVs

Transparent OPV Figure of Merit

 $LUE = PCE \times APT$

LUE: light utilization efficiency *PCE:* power conversion efficiency *APT:* average photopic transmission

$$APT = \frac{\int T(\lambda)P(\lambda)S(\lambda)d(\lambda)}{\int P(\lambda)S(\lambda)d(\lambda)}$$

 λ : wavelength; *T*: transmission *P*: photopic response; *S*: solar photon flux (AM1.5G)

Semi-Transparent Device Materials & Structures

Example of Photon Management

25

Non-Fullerene Acceptor Molecular Design

26

Semi-Transparent Organic Solar Cells

Color Tunable Windows

Li, et al. Adv. Mater., 31, 1903173 (2019)

Optical Outcoupling Layers

