Week 11

Light Detectors 1

Photodetection basics Photoconductors and Photodetectors Solar Cell basics

Chapter 7.1-7.3.2

Objectives

- Understand the physics of photodetection in organic photoconductors and photodiodes
- Understand OPD performance characteristics
 - Dark current
 - Efficiency and responsivity
 - Bandwidth
 - Noise
- Learn about OPD applications
- Solar cells: what makes OPVs a compelling story?
- Learn how to characterize solar cell performance
- Solar cell architectures
 - Thermodynamic efficiency limits to single junction cells
 - Multijunction cells and other architectures
 - The role of morphology
 - Some materials
- What lies beyond the horizon?

Photodetectors

- Transducers that convert light to another energy form (in our case, electricity)
- Types
 - Photoconductors
 - Photodiodes
 - These are operated in the reverse-biased (photodetection) or photovoltaic mode
- Properties
 - Sensitivity & Efficiency
 - Spectral range
 - Bandwidth
 - Dynamic range

Photoconductors

- Earliest organic electronic devices
- Simplest (no HJs needed)

When illuminated, conductivity changes

$$\sigma = q\left(\mu_n n + \mu_p p\right) \begin{bmatrix} p = p_{ph} + p_0 \\ n = n_{ph} + n_0 \end{bmatrix} \begin{bmatrix} n_{ph} = p_{ph} \\ n = n_{ph} + n_0 \end{bmatrix}$$

Photocharge generation

 Generation does not occur through an intermediate CT state as it does at OPD heterojunctions:

 $\tau_D = 1/k_D$ = lifetime of charge η_{ext} = external quantum efficiency (electrons out/photons in)

 \Rightarrow Photocurrent:

$$j_{ph} = \sigma F = q n_{ph} \left(\mu_n + \mu_p \right) \frac{V_a}{L} = q \frac{\eta_{ext} \left(P_{inc} \lambda / hc \right)}{k_D} \left(\mu_n + \mu_p \right) \frac{V_a}{dWL^2}$$

Gain and bandwidth

Photoconductors operate in the Ohmic (near equilibrium) regime

$$j_{ph} = \sigma F = q n_{ph} \left(\mu_n + \mu_p \right) \frac{V_a}{L} = q \frac{\eta_{ext} \left(P_{inc} \lambda / hc \right)}{k_D} \left(\mu_n + \mu_p \right) \frac{V_a}{dWL^2}$$

 $\Rightarrow \text{A photoconductor has gain: } g = \frac{j_{ph}}{j_0} = \tau_D \left(\mu_n + \mu_p \right) \frac{V_a}{L^2}$

Where:
$$j_0 = q \eta_{ext_{\Xi}} (P_{inc} \lambda / hc) / dW$$

That is: gain = τ_D / t_{tr} , where the carrier transit time is $t_{tr} = L/v = L/\mu F = L^2/\mu V$

$$g\eta_{ext} = \frac{j_{ph}A}{q(P_{inc}\lambda/hc)}$$

Quantum efficiency cannot be separated from gain

- Bandwidth: $\Delta f = 1/2\pi \tau_D$
- Leading to a gain-bandwidth product: $g\Delta f = 1/2\pi t_{tr}$

Noise

• Determines the sensitivity of a photodetector to low intensity signals

Photodiodes and solar cells

• Many of the same considerations as photoconductors except there is a junction for efficient charge separation.

- $\frac{1}{10}$ Exciton generation by absorption of light (abs length~1/ α
- Exciton diffusion over ~L_D
- Exciton dissociation by rapid and efficient charge transfer

Charge extraction by the internal electric field

Basic OPD/OPV structure

Current generation

• Recall (Ch. 4) that the *j*-V characteristics are given by:

$$j = j_0 \left[\exp\left(q\left(V_a - jAR_{ser}\right)/n_s k_B T\right) - \frac{k_{PPd}}{k_{PPd,eq}} \right] + \frac{V_a - jAR_{ser}}{R_{shunt}} - j_{ph}$$

Saturation current
$$j_0 = qa_0 k_{rec} N_s^2 \left(1 - \eta_{PPd}\right) \exp\left(-\Delta E_{HL}/k_B T\right)$$

Current-Voltage Characteristics

- In the photovoltaic mode, the power is P = jV < 0; i.e. the device delivers power to the external circuit.
- In the photodetector mode, *P* > 0 and the detector dissipates power.

Photodiode bandwidth

PD Equivalent Circuit

$$\Delta f = \frac{1}{2\pi} \left(\frac{1}{t_{tr}} + \frac{1}{\tau_{ED}} + \frac{1}{\tau_{RC}} \right) \qquad \tau_{RC} = (R_{ser} + R_L || R_{in})(C_j + C_P)$$
$$R_j \to \infty$$

In an OPD g = 1, such that $g\Delta f = \Delta f$

Heterojunction Morphologies Breaking the tradeoff between L_D and α with BHJs

Mixed HJ

Annealed BHJ

Controlled BHJ

Polymer Bulk HJ

OCH

onics

orrest

Yu et al. Science, **270**, (1995), 1789 Halls et al., (1995) Nature, 376, 498.

Small Molecule Planar-Mixed HJ

Small molecule blends: $\eta_{ED} = 1$

$$\eta_{CC} = \frac{L_C}{x_M} \left(1 - \exp\left(-\frac{x_M}{L_C}\right) \right)$$

Charge carrier collection length, *L_C*, replaces diffusion length since excitons dissociate at point of generation without diffusion to HJ

J. Xue, Adv. Mater., vol. 17, p. 66, 2005.

Comparison of OPCs and OPDs

Parameter	Photoconductor	Photodiode Reverse bias	
Operating	Near equilibrium $(V_a \rightarrow 0)$		
voltage			
Photocurrent	$\tau/t_{tr} (1-10^6)$	1	
gain (g)			
$oldsymbol{\eta}_{int}$	$k_{diss} / (k_{diss} + k_D)$	$k_{ppd} / (k_{PPd} + k_{PPr})$	
	$j_{ph}A$	$j_{ph}A$	
η_{ext}	$\overline{qgig(P_{_{inc}}\lambda/hcig)}$	$\overline{qig(P_{_{inc}}\lambda/hcig)}$	
Responsivity	$qg\eta_{_{ext}}ig(\lambda/hcig)$	$q \eta_{_{ext}} ig(\lambda / hc ig)$	
Bandwidth (Δf)	$1/2\pi\tau_D$	$1/2\pi t_{tr}$	
Gain-			
bandwidth	$1/2\pi t_{tr}$	$1/2\pi t_{tr}$	
product $(g\Delta f)$			
$\overline{i_n}^2/\Delta f$	$\left(4k_{B}T\right)/R_{PC}+\kappa/f^{\alpha}$	$2qi_T + 4k_BT/R_L \parallel R_{in}$	
Specific	() A	on A	
detectivity (D*)	$q\eta_{ext}(\lambda/hc)\sqrt{(4k_{_B}T)/R_{_{PC}}+\kappa/f^{lpha}}$	$q\eta_{ext}(\lambda/hc)\sqrt{\frac{1}{2qi_{T}+4k_{B}T/R_{L}\parallel R_{in}}}$	
		16	

Organic Electronics Stephen R. Forrest

How your camera works

Organic Electronics Stephen R. Forrest

Stacked sensors

19

High Bandwidth Multilayer Photodetectors

Place all D/A junctions within L_D of absorption site

Stack layers until total thickness d ~ $1/\alpha$

Apply voltage to sweep charge out of potential wells

Bandwidth due to transit time across d.

Spectral + Voltage Dependence of the EQE

•Sensitive to visible + NIR wavelengths

•Strong dependence on bias: EQE~75% @ -10V

Organic Electronics Stephen R. Forrest

21

P. Peumans, et al. Appl. Phys. Lett., 76, 3855 (2000).

Response Time

Thinner individual layers makes faster devices due to a reduced exciton lifetime

100 µm diameter, -9V, 1.4ps excitation @ 670nm at (1.0±0.3)W/cm².

Estimated carrier velocities: $v = d/\tau = (1.1 \pm 0.1) \times 10^4 \ cm/s$

Long wavelength Detectors

Carbon Nanotubes Can Stretch Detection to NIR

Long wavelength Detectors Single Walled Nanotubes Wrapped in Polymer

M. S. Arnold, et al., Nano Letters, 9, 3354, 2009.

24

Position Sensitive Detectors

- Mechanism of operation
 - Extended junction transports charge vertically (no current spreading)
 - Current divided by *linear* resistance of ITO strip

Rand, et al. IEEE Photon. Technol. Lett., 15, 1279 (2003).

Position Detection Characteristics

Applications of PSDs

- Machine vision
 - Part location and positioning
 - Robot servo feedback
 - 2D possible
- Lab bench positioning
- Free space communication

No Cell is Ideal

(see Ch. 4.7)

$$j = j_0 \left[\exp\left(q\left(V_a - jAR_{ser}\right) / n_S k_B T\right) - \frac{k_{PPd}}{k_{PPd,eq}} \right] + \frac{V_a - jAR_{ser}}{R_{shunt}} - j_{ph}$$

$$V_{OC} = \frac{n_S k_B T}{q} \log\left(\frac{j_{ph}}{j_0} + \frac{k_{PPd}}{k_{PPd,eq}}\right) \approx \frac{n_S k_B T}{q} \log\left(\frac{j_{SC}}{j_0} + 1\right)$$

$$j_{SC} \qquad (a)$$

 It is customary to plot power generating *j*-V of 4th quadrant in the 1st

•
$$P = (+j)(+V) > 0$$

Solar Cell Facts

- \cdot Solar power at Earth's surface on sunny day: 1 kW/m²
- Power conversion efficiency of a solar cell: electrical power generated per Watt of sunlight in units of W/W or %

Technology	Max. PCE	Pros & Cons
Single junction solar cell thermodynamic limit	31%	-
Multijunction solar cell record under concentrated sunlight	46%	Very efficient & expensive (100X Si)
Silicon solar cell	24%	-
Silicon cell when installed	18-20%	Competitive w. fossil fuel wide deployment
GaAs single junction cell	29%	Very expensive, useful for space applications
Perovskite cells	24+%	Unstable, toxic materials, potentially low cost, flexible
Organic cells	18%	Potentially low cost, flexible, transparent

Thermodynamic Limits to OPV cell Efficiency

Giebink, et al., Phys. Rev. B 83, 195326 (2011)

Single-Junction OPV Efficiency Limit

٠

est

ics