Week 10

Light emitters 3

Outcoupling Strategies Reliability

Chapter 6.6.2-6.7

Substrate Mode Outcoupling: ~2X Improvement

 η_{ext} ~40%

Microlens arrays: Polymer hemispheres much smaller than pixel

Möller, S. & Forrest, S. R. 2001. J. Appl. Phys., 91, 3324.

Spectrum angle independent

Reidel, et al., Opt. Express 18 A631 (2010)

← Scattering and surface roughness also can reduce substrate modes

Chang, et al., J. Appl. Phys., 113 204502 (2013)

Waveguide Mode Outcoupling: Embedded Low Index Grid

Low Index Grid Images

- OLED >> Grid size >> Wavelength
- Embedded into OLED structure
- May partially decouple waveguide mode from SPPs

Hybrid WOLED Performance Using Embedded Grids + Microlens Arrays

A better approach: Sub-Anode Grid

- A multi-wavelength scale dielectric grid between glass and transparent anode (subanode grid)
- The grid is removed from the OLED active region
- Waveguided light is scattered into substrate and air modes

Qu,et al., Nature Photonics (2015), 9, 758

Emission field calculations

WITH GRID

WITHOUT GRID

Qu, et al., Nature Photonics (2015), 9, 758

Organic Electronics Stephen R. Forrest

Optical Power Distribution

Qu, et al., Nature Photonics (2015), 9, 758

Getting All the Light Out: Sub-Electrode Microlens Array (SEMLA)

Organic Electronics Stephen R. Forrest

Qu, Y., et al. 2018. ACS Photonics, 5, 2453.

SEMLAs Change the Outcoupling Landscape

10

SEMLA Performance

Diffuse Reflectors: Low Cost & Simple

12

Kim, J., et al. (2018), ACS Photonics, 5, 3315.

Outcoupling Enhancements by Molecular Orientation

Example results

Substrate Corrugations Can Outcouple Waveguide Modes

- Waveguide thickness varies due to the corrugation.
- As the thickness changes, the mode distribution changes.
- When the waveguided power travels from thin to thick areas, the k vector needs to change direction to keep "being trapped". Otherwise, the light is extracted.

A possible approach: Surface buckling?

Reliability Testing Methodologies

- Need to set clear metrics for failure
 - Example: Operating time for initial luminance (L_0) to decrease 10% from its initial value (called T90, or LT90)
 - Employ a population of equivalent devices and monitor their performance parameter (e.g. luminance) under normal operating conditions
 - If degradation slow, then an empirical degradation relationship is determined to extrapolate time to failure
 - Example: Stretched exponential function:

 $L(t) = L_0 exp(-t/\tau)^{\beta}$ τ, β = empirical constants

- If degradation too slow, need to accelerate via increased T or L_0 .
 - Accelerated conditions must not introduce new failure modes
 - Need empirical relations to normalize lifetime to standard operating conditions (called acceleration factors)
 Organic Electronics Stephen R. Forrest

$$LTx(L_0) = LTx(L_{0tst}) \cdot \left[\frac{L_{0tst}}{L_0}\right]^n$$

n = empirical acceleration factor

Accelerated Degradation Methodologies

$$L(t)/L_0 = \lambda \exp(-t/\tau_1) + (1-\lambda)\exp(-t/\tau_2)$$

$$\frac{1}{\tau_2} = K'' j^{\alpha} \exp\left(-\Delta E_{A0}/k_B T\right)$$

 ΔE_{A0} =thermal activation of degradation α = current acceleration factor

Measuring populations of identical devices

Yoshioka, et al.. 2014, *SID Digest Tech. Papers*, 45, 642.

Intrinsic Lifetime Limits of OLEDs

Giebink, et al., J. Appl. Phys., 103, 044509 (2008).

Degradation Routes

Exciton-Exciton Annihilation

Bond	BE(eV)	Bond	BE(eV)
C-C	3.64	N-N	1.69
C-H	4.28	N-O	2.08
C-O	3.71	N-H	4.05
C-N	3.04	0-0	1.51
C-F	5.03	H-H	4.52

Bond cleavage Broken bonds? → Defects!

Evidence for Defect Formation: Molecular Fragmentation

Jeong, et al. Org. Electron., 64, 15 2019

Identification of Defect Energies

Jeong, et al. Org. Electron., 64, 15 2019

23

Reducing Exciton Density to Increase Lifetime

Y. Zhang, et al., Nature Comm. 5 5008 (2014)

Spreading the recombination zone: Dopant/Host Grading

Excitons in the EML

Y. Zhang, et al., Nature Comm. 5 5008 (2014)

26

10 X Lifetime Improvement Over Conventional

Dopant Grading: Is it Good Enough? using acceleration factors to predict lifetime

- Luminance to achieve sRGB color gamut for G is 10X that for B
- \Rightarrow B sub-pixel L_0 =100 cd/m² (c.f. G with L_0 >1,000 cd/m²)
- \Rightarrow B lifetime to T50=70,000 hr.
- Adopting Degradation acceleration factor: *n* = 1.55 with

$$T50(100 \text{ cd/m}^2) = T50(1000 \text{ cd/m}^2) \times \left[\frac{1000 \text{ cd/m}^2}{100 \text{ cd/m}^2}\right]^n$$

- \Rightarrow B PHOLED lifetime to T50 = 1.3×10⁵ hr.
- Commercial G PHOLED lifetime = 10^6 hours at $L_0 = 1000$ cd/m².

Organic Electronics Stephen R. Forrest

28

Not blue enough, T95 is required

Dopant Grading for Lighting: Is it OK?

- Current state of stacked WOLED: T70=13,000 hrs
- Mostly limited by blue lifetime
- Only light blue required
- Estimated increase in lifetime for stacked blue at lighting brightness: ~4X
- Lifetime of blue lighting using grading: 50,000 hr

This is almost good enough

Putting Grading Excited State Management to Work: Long lived all phosphor stacked WOLEDs

- Max Luminance > 200,000 nits
- 50 lm/W max
- CCT = 2780K
- CRI=89

Photo illustrating good color rendering of the SWOLEDs in this report. The luminaire comprises 36 pixels (2 mm²) operated at 50-100k nits

All Phosphor SWOLED Performance

Coburn et al., ACS Photonics 5, 630 (2017)

What we learned about OLEDs

- Chromaticity and the perception of color is quantified based on eye response (photometic quantities)
- OLEDs reach highest efficiency when both singlets and triplets are harvested (heavy metal complexes and TADF molecules)
- Optimized OLEDs have many layers serving purposes ranging from charge conduction, contacting to electrodes, to light emission
- Outcoupling methods essential to view substrate and waveguide modes while limiting surface plasmons
- Degradation of OLEDs particularly severe for blue due to bimolecular annihilation
- Lighting requires broad spectral emission using multilayer rganic Electronics devices or excimer emission
- OLEDs provide uniform, area lighting vs. specular LED lighting