Week 1-9

Electronic Properties 3 Field effect mobility Doping Metal-Organic Contacts

Chapter 4.4-4.6.2

Extracting the Diffusion Constant

Shockley-Haynes method (time of flight)

Light pulse (a) Bias sample at quasi-equilibrium to avoid injection (Ohmic at $V_a \rightarrow 0$). Light pulse generates excitons that separate into charges at t = 0Measure arrival time $(t_{\rm p})$ of the photogenerated х current pulse. $t_D = \frac{L}{\mu V_a}$ t₂ $\frac{\partial p}{\partial t} = D_p \frac{\partial^2 p}{\partial r^2}$ х $\sigma=2(4D_{p}t_{D})^{\frac{1}{2}}$ Start with diffusion equation: $p(x,t) = \left[\frac{P_0}{2\sqrt{\pi D_r t}}\right] \exp\left(-x^2/4D_p t\right) \quad \text{(A single } \mu \Rightarrow \text{Gaussian spreading)}$ With solutions: The peak decreases with t_D , and it spreads with half width at 1/e from max.: $\sigma = 2(4D_p t_D)^2$ Organic Electronics The width of the current pulse gives the diffusion constant of the charge, D. Stephen R. Forrest

 D_p should be consistent with the Einstein relation $\Rightarrow \mu$

23

Non-Dispersive Mobility in Ultrapure Organics

Band Transport in Organics

• Ultra-purified naphthalene

Mobility vs. majority carrier type
 e.g. If the mobility of holes > electrons,
 does NOT imply the material is p-type

ics est

 The "type" of a material depends on the polarity of the majority carrier

Time of Flight Experiment Ultrapurified Naphthalene Crystals

0.2

2

 $\lambda \sim 8a$: definitely in the band transport regime

TOF Mobility with Traps

- In the presence of defect states, charges continually trap and detrap during transit
 - The mobility is not a good number—there are several mobilities, one for each carrier

Organic Electronics Stephen R. Forrest

6

Results in **dispersive transport**

Evolution of dispersive transport

- Transport becomes increasingly dispersive with decreasing T
- Diffusion is thermally activated
- \Rightarrow Transport by thermally activated hopping

Time of flight hole current in the polymer, DEH

Organic Electronics Stephen R. Forrest

Borsenberger et al., Phys. Rev. B, 46, 12145 (1992).

Measuring Field Effect Mobility

Transfer characteristics of thin film transistors (OTFTs)

- This measures an <u>interface</u> property, **not** <u>bulk</u> mobility
- Can be strongly influenced by interface trapping
- Can be AC or DC Measurement
 - Almost always used in less reliable DC mode

How an OTFT works (More on this in Semester 2: This is quick introduction)

The charge induced by a gate voltage, V_G , at very low drain voltage, V_D , and hence low channel current (i.e. ohmic):

$$Q(x) = n(x)qt = C_G(V_G - V(x))$$

Charge layer thickness

But contact resistance, charge trapping, grain boundaries, etc. prevent channel conduction until a <u>threshold voltage</u> V_T is reached:

$$Q(x) = n(x)qt = C_G (V_G - V_T - V(x))$$

At low voltage, conduction is ohmic \Rightarrow we can use the average channel voltage drop V_D/2. Also, following Ohm's Law: $V_{\rm D}$

$$I_{D} = A\sigma F = W(n_{ave}qt)\mu \frac{V_{D}}{2L}$$

$$Q_{ave}$$

Or, in the linear regime of operation:

$$I_{D} = \frac{W}{L} C_{G} \mu \left(V_{G} - V_{T} - \frac{V_{D}}{2} \right) V_{D} = \frac{W}{L} C_{\mu} \mu \left(V_{G} - V_{T} \right) V_{D} - \frac{V_{D}^{2}}{2} \right)$$

Bottom contact/bottom gate

Extracting the Mobility

In the linear regime $(V_G - V_T >> V_D)$, we calculate the transconductance:

$$g_m = \frac{\partial I_D}{\partial V_G}\Big|_{V_D} = \frac{W}{L}C_G\mu_{lin}V_D$$

Or the output conductance:

$$g_o = \frac{\partial I_D}{\partial V_D} \bigg|_{V_G} = \frac{W}{L} C_G \mu_{lin} (V_G - V_T)$$

Due to contact and other parasitic resistances, μ_{lin} can give errors, so mostly use saturation characteristics: \Rightarrow When $V_D = V_G - V_T$ channel pinches off \Rightarrow No longer potential drop between drain and pinch-off point \Rightarrow No more current (except leakage) enters channel with increasing V_D , hence we are in the <u>saturation regime</u>.

Then:
$$I_D = \frac{W}{2L} C_G \mu_{sat} (V_G - V_T)^2$$

Plot of $I_D^{1/2}$ vs. V_G gives both μ_{sat} and V_T

DC Characteristics of an OTFT

- Pentacene most frequently employed small molecule for OTFT
- μ_{sat}~1-1.5 cm²/V-s
- DC mobility as high as 40 cm²/V-s measured in rubrene using OTFTs: is it reliable? (Takeya, et al. Appl. Phys. Lett. 90 102120 (2007))
- OTFTs measure interface conductance, not mobility.
- BUT OTFTs can also be used in AC mode (equivalent to a TOF measurement)

$$f_T = \frac{1}{2\pi RC} = \frac{g_m}{2\pi (C_G + C_p)} = \frac{W}{2\pi L} \frac{C_G}{(C_G + C_p)} \mu_{sat,AC} (V_G - V_T)$$
Parasitic capacitance

However, this method rarely employed in organics.

(see Kitamura and Arakawa, Appl. Phys. Lett. 95 023502 (2009))

There are many ways to measure $\boldsymbol{\mu}$

Technique	Sample Geometry	Typical Data
1. TOF (Time-of-flight)	Pulsed $d \rightarrow d$	
2. DISLC (Dark-injection space-charge-limited current)		
3. <i>J-V</i> Analysis (current-voltage characteristics)	V_{dc} $ A$ I_{dc}	
4. CELIV (Charge extraction by linearly increasing voltage)	Pulsed laser V	j Δj j(0) t_{max} t
5. Hall Effect	$I \xrightarrow{+\circ} d \xrightarrow{d} V=0$ $V=V_H$	
6. OTFT (Organic Thin Film Transistor)	$ \begin{array}{c} $	

Typical ranges (at R	T)		
(cm ² /V-s)			

- Small molecule:
 - Amorphous: 10⁻⁵-10⁻
 - Crystalline: 10⁻²-1
- Polymer: 10⁻⁵-10⁻¹

2

- No systematic difference between μ_n or μ_p
- Many more high hole vs. electron mobility materials

Doping of Organics to Increase Conductivity

Temperature Dependence of Charge Density

Doping in Organics: Not entirely similar to inorganics

Substitutional doping in inorganics

Doping at the molecular level

Example molecular dopants

LiF + Al cathodes common in OLEDs:

 $LiF + Al \rightarrow Li^{+} + e^{-} + AlF$

Difficult to get a high conductivity (it takes *a lot* of dopant)

Scattering/morphological disruption⇒saturation

N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine with F₄-TCNQ.

Olthof et al., J. Appl. Phys., 106, 103711 (2009)

Problem 1: High doping reduces mobility

- Disorder in crystal introduces scattering
- As T increases, scattering reduces as DOS mobility edge moves toward energy gap edge

Organic Electronics Stephen R. Forrest

Olthof et al. Phys. Rev. Lett., 109, 176601 (2012).

Problem 2: Dopants diffuse with time and temperature

Organic Electronics Stephen R. Forrest

Li et al, Macromolec. 50, 5476 (2017)

Recombination

Charge diffusion equations

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{j}_e - R_e + G_e \qquad \qquad \frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{j}_h - R_h + G_h$$

$$\mathbf{j}_e = q D_e \nabla n$$

Using Fick's Law

$$\mathbf{j}_h = -qD_h \nabla p$$

Gives:
$$\frac{\partial n}{\partial t} = D_e \nabla^2 n - R_e + G_e$$

$$\frac{\partial p}{\partial t} = D_h \nabla^2 p - R_h + G_h$$

Direct HOMO-LUMO Recombination and via Midgap States

Shockley-Read-Hall Recombination

Geminate & Bimolecular Recombination

Langevin (Bimolecular) Recombination

• When two carriers meet....

Capture radius: When Coulomb = thermal energy

$$r_c = \frac{q^2}{4\pi\varepsilon_r\varepsilon_0 k_B T}$$

Langevin recombination rate constant:

$$\gamma_{L} = \frac{q}{\varepsilon_{r}\varepsilon_{0}} (\mu_{e} + \mu_{h}) = \frac{q}{\varepsilon_{r}\varepsilon_{0}} \mu_{T}.$$

Yielding the recombination rate (and hence current)

Organic Electronics Stephen R.

24

orrest

$$R^{L} = \gamma_{L} \left(pn - n_{i}^{2} \right)$$

Injection From Contacts Schottky barrier formation

Traps Play a Big Role in Determining Barrier Heights at Metal-Semiconductor Junctions

25

Organic Electronics Stephen R. Forrest

Metal Work Functions

Schottky barrier formation and the built-in potential

$$V_{bi} = \phi_M - \phi_S = \phi_M - \left[\chi + \frac{1}{q} \left(E_C - E_f\right)\right]$$

 qV_{bi} $q\chi_s$ E_c E_V

Current sources across Metal-Org. Junction

- 1. Thermionic emission
- 2. Tunneling
- 3. Majority carrier recombination
- 4. Majority carrier diffusion
- 5. Minority carrier (hole) diffusion

Barrier Lowering Under Applied V

Barrier lowering and increasing depletion occur with voltage

Experiment

Photoemission over barrier vs. voltage yields barrier height and lowering

Rikken, et al. Appl. Phys. Lett., 65, 219 (1994).

j-V Characteristics of M-O Junctions

Junction and Schottky Diodes A qualitative comparison

Image charge barrier lowering and tunneling make reverse characteristics of Schottky diodes more voltage dependent than ideal diodes

