Week 1-8

Electronic Properties 2

Energy bands (cont'd) Charge transfer: hopping Ohmic and space charge currents Measuring mobility

Organic Electronics Stephen R. Forrest

Ch. 4.2-4.4

Measuring Band Structure (and other energies of interest)

- Ultraviolet photoelectron spectroscopy (UPS)
- Photoelectric effect used to measure energy of a single electron from the HOMO to the vacuum level.
- Gives *k* of photoemitted electron
- Varying angle (ARUPS) of sample gives dispersion E(**k**) for k_{\perp}

Interpretation of PES Spectra

SOMO=singly occupied MO

Calculated and Measured Band Structures

Calculated structure for biphenyl:

- Two molecules/cell give 2 branches *along each direction*
- Max. BW= ~ 70 meV for electrons & holes

Katz, J. I., et al. 1963. J. Chem. Phys., 39, 1683.

Hasegawa, S., et al. 1994. J. Chem. Phys., 100, 6969.

Measured structure for BTQBT:

- Technique: ARUPS
- Minimum contact distance: 3.26 Å
- HOMO BW = 400 meV
- m* = 3.1 m₀
- Recall: $\mu_h = \frac{q\tau}{m_h^*}$
- But thermally broadened bands have
- $\mu \sim 6.5 \text{ cm}^2/\text{V-s}$ (c.f. Hall measurement of 4 cm²/V-s)

(NHOMO = next highest orbital)

 $\tau > \hbar / k_{\rm B} T$

Charge Mobility Describes Transport in Solids

- Charge mobility: μ (not the dipole moment!)
- Definition: Constant of proportionality between velocity and electric field:

$$\mathbf{v}(\mathbf{k}) = \vec{\mu}_{\mathbf{k}} \mathbf{F}$$

- Tensor: dependent on crystal direction
- > Generally field dependent: $\mu = \mu(\mathbf{F})$
- Depends on energy dispersion (i.e. band structure) via:

$$\mathbf{v}(\mathbf{k}) = \frac{1}{\hbar} \frac{\partial E(\mathbf{k})}{\partial \mathbf{k}}$$

For band-like transport: $\mu = \frac{q\tau}{m^*}$

(τ = mean free scattering time of the charge in the crystal: For thermally broadened bands: $\tau > \hbar / k_B T$)

• Ohms Law: $\mathbf{j} = q(n\mathbf{v}_e + p\mathbf{v}_h) = \ddot{\sigma}\mathbf{F}$

or
$$\vec{\sigma} = q(n\vec{\mu}_e + p\vec{\mu}_p)$$

Mobility and Charge Diffusion

• <u>Near equilibrium</u>, the Einstein relationship connects these quantities:

$$\frac{D}{\mu} = \frac{k_B T}{q}$$

• Charge diffusion length: $L_q = \sqrt{D\tau}$

Band vs. Hopping Transport

- The charge diffusion length is: $L_q = \sqrt{D\tau} = \left[\frac{\mu\tau k_B T}{q}\right]^{\frac{1}{2}}$
- Band transport occurs when $L_q >> a$.
- From uncertainty: $BW \bullet \tau > \hbar$
- Condition for band conduction $\Rightarrow \mu > \frac{qa^2}{\hbar} \left(\frac{BW}{k_BT}\right)$
 - (Ex. Room temperature, let *BW*=25 meV, *a*=5Å. Then μ >5 cm²/V-s)
- Hopping due to short range interaction involving only nearest neighbor molecules
 - Incoherent diffusive process
 - Electron is heavy since it self traps: it polarizes the neighborhood and must carry that energy along with it.

Organic Electronics Stephen R. Forrest

- Since only nearest neighbors are affected = small polaron
- Ionic materials, where the interaction goes as ~1/r = large polaron

Holstein, T. 1959. Studies of Polaron Motion. Part II. The "Small" Polaron. Ann. Phys., 8, 343?

Hopping Formalism

• Total Hamiltonian:

• Important terms:

 $H_e^{tr} = \sum_{m \neq n}^N J_{nm} a_n^+ a_m$ $a^+(a) =$ electron creation (annihilation) operator

 $J_{nm} = \langle \psi_n(\mathbf{r} - \mathbf{R}_n) | H_e^{tr} | \psi_m(\mathbf{r} - \mathbf{R}_m) \rangle$ Overlap between molecules *m*, *n* - As in tight binding, leads to BW

 $\mathcal{N}_i = a_i^+ a_i$ Number operator

e-phonon coupling constant

$$H_{e-ph}^{loc} = \frac{1}{\sqrt{N}} \sum_{\mathbf{q},j} \sum_{m}^{N} \hbar \omega_{\mathbf{q},j} \Big(g_m(\mathbf{q},j) b_{\mathbf{q},j} + g_m^*(\mathbf{q},j) b_{-\mathbf{q},j}^+ \Big) a_m^* a_m$$

q = phonon wavevector *j* = phonon branch Organic Electronics Stephen R. Forrest

On-diagonal dynamic disorder: couples excess electron to molecular vibronic levels

And so on....

The case for static disorder

- Most organic semiconductors are permanently disordered
 - Polymers generally not formed into crystals
 - Small molecules used in devices are often amorphous or nanocrystalline
 - Even "perfect" crystals have impurities, stacking faults, dislocations
- A complete picture must include static disorder term:

$$H_e^{stat} = \sum_n^N \delta \varepsilon_n a_n^+ a_n + \sum_{\substack{m,n \\ m \neq n}}^N \delta J_{nm} a_n^+ a_m$$

• Static disorder leads to hopping in both energy and space.

Organia Flectronics Stephen R. orrest

Visualizing Lattice Distortions

R. Forrest

Small polaron theory predicts several transport regimes

- Dependent on coupling strength, g
- Static disorder not included here
- Band and tunneling both coherent and follow power law dependence

Going from formal theory to a practical quantity (µ)

- Diffusion constant is calculated from hops from site $p: p \rightarrow p \pm 1$
- Then in 3D: $D = \frac{1}{3}k_{ET}(p \rightarrow p \pm 1)\frac{a^2}{2}$ (6 sites to choose from on a cube)
- It follows from Einstein: $\mu = \frac{q}{3k_BT}k_{ET}(p \to p \pm 1)\frac{a^2}{2}$
- From small polaron theory we obtain k_{ET} (remember Fermi's Golden Rule!)
- And with Holstein's help, in the high temperature limit $(k_B T > \hbar \omega_0)$:

$$\mu_{hop} = \frac{qJ^2a^2}{6k_BT\hbar} \left[\frac{\pi}{2E_{pol}k_BT}\right]^{1/2} \exp\left(-\frac{E_{pol}}{2k_BT}\right)$$

- $\checkmark\,$ The hopping mobility is thermally activated
- ✓ It scales with the square of the bandwidth, J^2 .
- ✓ As $E_{\rm pol}$ increases, $\mu_{\rm hop}$ decreases

✓ As
$$T \rightarrow$$
 large; then $\mu_{hop} \sim T^{-3/2}$

• As $T \rightarrow$ small; then μ_{hop} replaced by μ_{tun}

Stephen K.

: scattering!

Molecular energy changes when a charge is transferred

The effects of polarization (small polaron theory)

Molecular relaxation due to polarization: analogous to FC for excitons

Or polarization energy $\approx E_{pol}^{loc} = \lambda_{reorg} / 2$.

Description of Hopping + Disorder

• <u>Master equation</u> for a site at **R**_i being occupied at time, *t*:

- *f_i(t)* is described by Fermi-Dirac statistics, but this is complicated.
- Simplifications:
 - At low densities, terms in f_i^2 can be ignored
 - Assume no recombination between hopping events (k_{rec}=0).

$$\Rightarrow \frac{\partial f_i(t)}{\partial t} = \sum_{j \neq i}^{N} \left\{ -k_{ij} f_i(t) + k_{ji} f_j(t) \right\}$$

• Current is then found by: Density of states of hopping sites

 $j_{+x}(t) = q \int \rho(\varepsilon) d\varepsilon \sum_{i}^{N} \left[\frac{\partial f_{i,+x}(\varepsilon,t)}{\partial t} - \frac{\partial f_{i,-x}(\varepsilon,t)}{\partial t} \right]$

Organia Electronics Stephen R. orrest 14

The theory of μ

- **Goal:** To find μ , but now with disorder expressed through $\rho(\varepsilon)$.
- We first need to find the rates, k_{ij} in the presence of disorder.
 - Model 1: Miller-Abrahams theory
 - Developed for impurity band conduction in semiconductors
 - Valid for weak electron-phonon coupling $(g_{m}, g_{nm} \text{ small})$

$$k_{ij} = v_0 \exp\left(-2\gamma_{ij}R_{ij}\right) \begin{cases} \exp\left(-\frac{\varepsilon_j - \varepsilon_i}{k_B T}\right) & \varepsilon_j > \varepsilon_i \\ 1 & \varepsilon_j < \varepsilon_i \end{cases}$$

 v_0 = hopping attempt freq.~opt. phonon freq. γ =overlap factor, decay of wavefunction between *i*,*j*. R_{ij} =hopping distance

Stephen R.

orrest

- Implications:
 - "Uphill" transfers are thermally activated
 - "Downhill" transfers encounter no barrier
 - Valid when ε_j ε_i < Θ_m (Debye energy) of acoustic and optical phonons (~0.15 eV)
 ⇒ low temperatures
 - In F-field, add in -qr•F to exponential argument where F points from j⇒i

Miller, A. & Abrahams, E. 1960. Phys. Rev., 120, 745.

Model 2: Marcus Transfer

- Developed for understanding transfer of electron from donor to acceptor in solution
 - Generalized form of mobility in the small polaron (non disordered) model. Starting point will again be from Holstein:

$$k_{ET} = \frac{6k_B T \mu}{qa^2} \times \frac{J^2}{\hbar} \left[\frac{\pi}{2E_{pol}k_B T} \right]^{1/2} \exp\left(-\frac{E_{pol}}{2k_B T}\right)$$

- Valid for both upward and downward jumps: Only based on difference in free energy between initial and final states, ΔG .
- Valid at high temperatures, and strong electron-phonon couplings
- Activation energy for the transfer reaction: $2E_{act} = E_{pol} = \lambda_{reorg}/2$
- From Miller-Abrahams:

$$J = J_0 \exp\left(-\gamma_{ij}R_{ij}\right)$$

Organic Electronics Stephen R. Forrest

Marcus, R. A. 1993. Rev. Modern Phys., 65, 599.

Transfer regimes under Marcus

Transfer rate depends on ΔG which can be less than or greater than 0.

Reaching the Inverted Region

Two examples

Density of States and the Mobility Edge

$$\langle \varepsilon_{\infty} \rangle = \frac{\int_{-\infty}^{\infty} \varepsilon \rho(\varepsilon) \exp(-\varepsilon / k_{B}T) d\varepsilon}{\int_{-\infty}^{\infty} \rho(\varepsilon) \exp(-\varepsilon / k_{B}T) d\varepsilon} = -\frac{\sigma^{2}}{k_{B}T}$$

Mean equilibrium carrier energy— Charges relax into the tail of the distribution R. Forrest

Mobility (at last!)

- We now have everything we need:
 - Site occupation: $f_i(\varepsilon)$ from Fermi statistics
 - Transfer rate: k_{ij}
 - Site DOS: *ρ(ε)*
- As seen previously, mobility depends on k: $\mu = \frac{q}{3k_{BT}}k_{ET}(p \rightarrow p \pm 1)\frac{a^{2}}{2}$
- But this is not possible to solve exactly.
- Based on Marcus theory (most applicable), including electric field effects we get (ouch!):

$$\mu \approx \mu_0 \exp\left\{-\frac{E_{act}}{k_B T} - \frac{1}{8q^2} \left(\frac{\sigma}{k_B T}\right)^2 + \frac{1}{2\sqrt{2}q^2} \left[\left(\frac{\sigma}{k_B T}\right)^{3/2} - \left(\frac{\sigma}{k_B T}\right)^{1/2}\right] \sqrt{\frac{qaF}{\sigma}}\right\}$$

- At F=0, mobility activation ~ $1/T^2$ at low T, 1/T at high T
- Recall polaronic dependence follows ~1/T
- Monte-Carlo simulations show similar form

Fishchuk, I., et al. 2003. Phys. Rev., 67, 224303.

Poole-Frenkel type dependence Stephen R. Forrest

Poole-Frenkel Effect

• Trap barrier lowering due to external field

Tests of mobility theory

Current and Conductivity

- 1. Ohm's Law (gives DC mobility).
- For a single carrier (holes in this case) in a uniform electric field:

$$j = qp\mu F = qp\mu \frac{v}{d}$$

- Gives the product $p\mu \Rightarrow$ requires independent determination of charge density.
- Ohmic regime identified by linear relationship between j and V.
- 2. Space charge limited current (gives DC mobility).
- When the injected carrier density p_{inj} > p₀ (the background charge density), charge accumulates at electrodes:

Similar to Monte Carlo Expressions

Widely used expressions for mobility in disordered systems based on Miller-Abrahams: (fits transient characteristics as well)

Space Charge Limited Current

- In the space charge regime, we make the following assumptions to solve *j* vs. *V* :
 - $p_{inj} > p_0$
 - Only one carrier type is present
 - $\mu \neq \mu(F)$ (Field-independent mobility)
 - Free carrier distribution follows Boltzmann statistics
 - Trapped charge occupation defined by Fermi statistics
 - F is large enough for drift (and not diffusion) to dominate
 - Field not so large that field emission is important

• In 1D, Gauss says:
$$\frac{dF}{dx} = \frac{q(p_{inj}(x) + p_t(x) + p_0)}{\varepsilon} \approx \frac{qp_{inj}(x)}{\varepsilon}$$
 (trap free case)

• $\varepsilon = \varepsilon_0 \varepsilon_r$

• Current in the absence of trapped charge, $p_t(x)$: $j(x) = q\mu_p p_{inj}(x)F(x)$

• Now:
$$\frac{dF^2(x)}{dx} = 2F(x)\frac{dF(x)}{dx} = \frac{2qp_{inj}(x)F(x)}{\varepsilon} = \frac{2j(x)}{\varepsilon\mu_p}$$

• Since *j* is constant across layer $\Rightarrow F^2(x) = \frac{2jx}{\epsilon\mu_p}$ (This is current continuity)

j-V in the SCL regime

 $F^{2}(x) = \frac{2jx}{\epsilon\mu_{p}} \Rightarrow F(x) = \sqrt{\frac{2jx}{\epsilon\mu_{p}}}$ Note: $F(x)^{\sim}x^{1/2}$ vs. F(x)= constant for Ohmic

Now potential is:
$$-\frac{dV}{dx} = F(x)$$

Integrating between $0 < V < V_a$ and 0 < x < d

We obtain:
$$V_a = \frac{2}{3} \sqrt{\frac{2jd^3}{\epsilon\mu_p}}$$

Giving the Mott-Gurney relationship:

$$j = \frac{9}{8}\mu_p \varepsilon \frac{V_a^2}{d^3}$$

Note the absence of *p*!

 \Rightarrow Only need the dielectric constant and the film thickness.

Use the ohmic region of the *j*-V curve to determine p_0 .

SCL Current in PTCDA

Forrest, S. R., Kaplan, M. L. & Schmidt, P. H. 1984 J. Appl. Phys., 55, 1492.

The truth is in the data

j~V4

This isn't simple SCL current, in which case $j^{\sim}V^2$

This is SCL in the presence of a high density of traps

Let the data speak to you, not vice versa

Organic Electronics Stephen R. Forrest 28

But what happens if things aren't so simple?

- We have assumed no traps. In organics, this is not often the case due to *static disorder* (i.e. defects in the solid, stacking faults).
- Simplest case: A single discrete, shallow trap where $\frac{p_0}{p_t} = \Theta << 1$
- Then <u>you</u> can show: $j = \frac{9}{8} (\Theta \mu_p) \varepsilon \frac{V_a^2}{d^3}$

 \succ That is, the mobility is now reduced by Θ

More often there is an exponential distribution of traps, in which case we have trap-filled limited conduction:

$$j_{TFL} = q\mu N_{HOMO} \left[\frac{\varepsilon m}{q(m+1)N_t} \right]^m \left[\frac{2m+1}{m+1} \right]^{m+1} \frac{V_a^{m+1}}{d^{2m+1}}$$

- $m=T_t/T$ where T_t is the characteristic trap temperature
 - Define $p_t = N_t \exp\left(-\left(E_{Fp} E_{HOMO}\right)/k_BT_t\right)$
 - Leading to: $p = N_{HOMO} \exp\left(-\left(E_{Fp} E_{HOMO}\right)/k_BT\right) = N_{HOMO} \exp\left(-\left(E_{Fp} E_{HOMO}\right)/k_BT_t[T_t/T]\right)$

$$p = N_{HOMO} \left(\frac{p_t}{N_t}\right)^{T_t/T} \Longrightarrow p_t = N_t \left(\frac{p}{N_{HOMO}}\right)^{1/m}$$

номо

E_{Fp}r

Filled w. holes

Organic Electronics Stephen R. Forrest

Examples of TFL-SCL

³⁰