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Week 1-8

Energy bands (cont’d)
Charge transfer: hopping

Ohmic and space charge currents
Measuring mobility

Ch. 4.2-4.4

Electronic Properties 2
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Measuring Band Structure 
(and other energies of interest)

2
ki,Ei

kf,Ekin

• Photoelectric effect used to measure 
energy of a single electron from the 
HOMO to the vacuum level.

• Gives k of photoemitted electron
• Varying angle (ARUPS) of sample gives 

dispersion E(k) for k⊥

• Ultraviolet photoelectron spectroscopy (UPS)
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Interpretation of PES Spectra

3

He I = 21.2 eV

SOMO=singly occupied MO
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Calculated and Measured Band Structures
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Calculated structure for biphenyl:
• Two molecules/cell give 2 branches along 

each direction
• Max. BW= ~ 70 meV for electrons & holes

Elec.

Holes

		

(a)	 (b)	

Measured structure for BTQBT:
• Technique: ARUPS
• Minimum contact distance: 3.26 Å
• HOMO BW = 400 meV
• m* = 3.1 m0

• Recall:

• But thermally broadened bands have 

• µ ~ 6.5 cm2/V-s (c.f. Hall measurement of 4 cm2/V-s)

µh =
qτ
mh
*

 τ > ! / kBT

Hasegawa, S., et al. 1994. J. Chem. Phys., 100, 6969.

Katz, J. I., et al. 1963. J. Chem. Phys., 39, 1683. (NHOMO = next highest orbital)
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Charge Mobility Describes Transport in Solids

• Charge mobility: μ (not the dipole moment!)

• Definition: Constant of proportionality between velocity and electric field:

Ø Tensor: dependent on crystal direction
Ø Generally field dependent: μ=μ(F)
Ø Depends on energy dispersion (i.e. band structure) via:

Ø For band-like transport:

(τ = mean free scattering time of the charge in the crystal:
For thermally broadened bands: )

• Ohms Law:

Ø or

µ = qτ
m*

 
v k( ) = 1

!
∂E k( )
∂k

 v(k) =
!
µkF

 τ > ! / kBT

 j = q nve + pvh( ) = !σF

 
!
σ = q n

!
µe + p

!
µp( )

5
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Mobility and Charge Diffusion

• Near equilibrium, the Einstein relationship connects these quantities:

• Charge diffusion length:

D
µ
= kBT

q

Lq = Dτ

6
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Band vs. Hopping Transport
• The charge diffusion length is:

• Band transport occurs when Lq >> a. 

• From uncertainty:

• Condition for band conduction

• (Ex. Room temperature, let BW=25 meV, a=5Å. Then µ>5 cm2/V-s)

• Hopping due to short range interaction involving only nearest neighbor 
molecules
• Incoherent diffusive process

• Electron is heavy since it self traps: it polarizes the neighborhood and must carry that 
energy along with it.

• Since only nearest neighbors are affected = small polaron

• Ionic materials, where the interaction goes as ~1/r = large polaron

7

Lq = Dτ = µτ kBT
q

⎡
⎣⎢

⎤
⎦⎥

1
2

 BW iτ > !

 
⇒  µ > qa

2

!
BW
kBT

⎛
⎝⎜

⎞
⎠⎟

Holstein, T. 1959. Studies of Polaron Motion. Part II. The "Small" Polaron. Ann. Phys., 8, 343.



Organic Electronics
Stephen R. Forrest

Hopping Formalism

• Total Hamiltonian:

• Important terms:

8

HT = He
0 + Hph

0 + He
tr + He−ph

loc + He−ph
non + He

stat

Unperturbed 
molecule

Electron 
transfer: 
BW ~ J

Dynamic 
disorder

Static 
disorder

He
tr = Jnman

+am
m≠n

N

∑ a+(a) = electron creation (annihilation) operator

Jnm = ψ n r −Rn( ) He
tr ψ m r −Rm( ) Overlap between molecules m, n

- As in tight binding, leads to BW

Ni= ai
+ai 	 Number operator

 
He−ph

loc = 1
N

!ω q, j
m

N

∑
q, j
∑ gm q, j( )bq, j + gm* q, j( )b−q, j+( )am+am

On-diagonal dynamic disorder: couples excess electron to 
molecular vibronic levels

And so on….

e-phonon coupling constant
q = phonon wavevector
j = phonon branch
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The case for static disorder

• Most organic semiconductors are permanently disordered

• Polymers generally not formed into crystals
• Small molecules used in devices are often amorphous or 

nanocrystalline
• Even “perfect” crystals have impurities, stacking faults, dislocations

• A complete picture must include static disorder term:

• Static disorder leads to hopping in both energy and space.

9

He
stat = δεnan

+an
n

N

∑ + δ Jnman
+am

m,n
m≠n

N

∑
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Visualizing Lattice Distortions
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Unperturbed	molecule	
	He

0 + Hph
0

Intramolecular	phonons	

He−ph
loc

He−ph
non

Intermolecular	phonons	

Sta3c	disorder	
He

stat

Electron	transfer	

He
tr
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 εn
0;  !ω q, j

Jnm

gm q, j( )

gnm q, j( )

δεn;  δ Jnm

(a)	

(b)	

(c)	

(d)	

(e)	
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Small polaron theory predicts several 
transport regimes

11

Temperature	

Lo
g(
µ)

	

Weak	coupling,	g2	<1	

Strong	coupling,	g2	>1	

Hopping:	µ	~	exp(-E/kBT)	

Tunneling:	µ~T-n	

ScaDering:	µ	~	T-3/2	
Band:	µ~T-n	

TBH	 THS	

• Dependent on coupling strength, g
• Static disorder not included here
• Band and tunneling both coherent and follow power law dependence

M
ob

ili
ty
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Going from formal theory to a practical 
quantity (µ)

• Diffusion constant is calculated from hops from site p:

• Then in 3D:

• It follows from Einstein:

• From small polaron theory we obtain kET (remember Fermi’s Golden Rule!)

• And with Holstein’s help, in the high temperature limit (kBT>ħω0):

ü The hopping mobility is thermally activated

ü It scales with the square of the bandwidth, J2.

ü As Epol increases, µhop decreases

ü As : scattering!

• As 12

p→ p ±1

D = 1
3
kET (p→ p ±1) a

2

2
µ = q

3kBT
kET (p→ p ±1) a

2

2

 
µhop =

qJ 2a2

6kBT!
π

2EpolkBT
⎡

⎣
⎢

⎤

⎦
⎥

1/2

exp −
Epol

2kBT
⎛
⎝⎜

⎞
⎠⎟

 T → large; then µhop ~ T
−3/2

 T → small; then µhop  replaced by µtun

(6 sites to choose from on a cube)
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Molecular energy changes when a charge is 
transferred

The effects of polarization (small polaron theory)

13

Neutral ground state

Charged state

Reorganization energy:

Or polarization energy ≈

λreorg = λrel
(1) + λrel

(2)

Epol
loc = λreorg / 2.

Assume identical molecules at i and f

Molecular relaxation due 
to polarization: analogous 
to FC for excitons
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Description of Hopping + Disorder
• Master equation for a site at Ri being occupied at time, t:

• fi(t) is described by Fermi-Dirac statistics, but this is 
complicated.
• Simplifications:

• At low densities, terms in fi
2 can be ignored

• Assume no recombination between hopping events (krec=0).

• Current is then found by: 

14

∂ fi t( )
∂t

= −kij fi t( ) 1− f j t( )⎡⎣ ⎤⎦ + kji f j t( ) 1− fi t( )⎡⎣ ⎤⎦{ }
j≠i

N

∑ − krec fi t( )

Prob. of jump
from ièj

Prob. of jump
from jèi

Prob. for recombination
Jump rate
from ièj

⇒
∂ fi t( )
∂t

= −kij fi t( ) + kji f j t( ){ }
j≠i

N

∑

j+ x t( ) = q ρ ε( )dε ∂ fi,+ x ε ,t( )
∂t

−
∂ fi,− x ε ,t( )

∂t
⎡

⎣
⎢

⎤

⎦
⎥

i

N

∑∫

Density of states of hopping sites
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The theory of µ
• Goal: To find µ, but now with disorder expressed through ρ(ε).
• We first need to find the rates, kij in the presence of disorder.
• Model 1: Miller-Abrahams theory 

• Developed for impurity band conduction in semiconductors
• Valid for weak electron-phonon coupling (gm, gnm small)

• Implications:
• “Uphill” transfers are thermally activated
• “Downhill” transfers encounter no barrier

• Valid when εj - εi < Θm (Debye energy) of acoustic and optical phonons (~0.15 eV) 
⇒ low temperatures

• In F-field, add in -qr�F to exponential argument where F points from j⇒i

15

 

kij =υ0 exp −2γ ijRij( ) exp −
ε j − ε i
kBT

⎛
⎝⎜

⎞
⎠⎟

       ε j > ε i

1                             ε j < ε i

⎧

⎨
⎪⎪

⎩
⎪
⎪

ν0= hopping attempt freq.~opt. phonon freq.
γ=overlap factor, decay of wavefunction

between i,j.
Rij=hopping distance

Miller, A. & Abrahams, E. 1960. Phys. Rev., 120, 745.
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Model 2: Marcus Transfer
• Developed for understanding transfer of electron from donor 

to acceptor in solution

• Generalized form of mobility in the small polaron (non disordered) 
model. Starting point will again be from Holstein:

• Valid for both upward and downward jumps: Only based on difference 
in free energy between initial and final states, ΔG.

• Valid at high temperatures, and strong electron-phonon couplings
• Activation energy for the transfer reaction: 2Eact = Epol =  λreorg/2
• From Miller-Abrahams: 

16

Marcus, R. A. 1993. Rev. Modern Phys., 65, 599.

J = J0 exp −γ ijRij( )

 
kET =

6kBTµ
qa2

= J 2

!
π

2EpolkBT
⎡

⎣
⎢

⎤

⎦
⎥

1/2

exp −
Epol

2kBT
⎛
⎝⎜

⎞
⎠⎟

x
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kET = Aexp − ΔG *
kBT

⎡

⎣
⎢

⎤

⎦
⎥ = Aexp −

λreorg + ΔG0( )2
4λreorgkBT

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Transfer regimes under Marcus
Transfer rate depends on ΔG which can be less than or greater than 0.

Unique prediction of Marcus theory:
The inverted regime where |DG0|>lreorg
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k E
T (

s-1
)

DEHOMO or DELUMO (eV)

 D to A
 A to D

invertednormal

D
A

IPD

IPA

Eopt

EAA, opt
max VOC

EAA

Electron transfer for 	D→ A	or	A→ D
Rand, et al. 2007. Phys. Rev. B, 75, 115327.

Reaching the Inverted Region
Two examples

Reaction chemistry across a bridging (Sp) molecule Charge transfer at an OPV Donor/Acceptor HJ

Predictions of Marcus 
theory

Miller et al., J. Am. Chem. Soc., 106, 3047 (1984)



Organic Electronics
Stephen R. Forrest

Density of States and the Mobility Edge

19

A commonly used model: Gaussian Disorder Model (GDM) introduced by Bässler

Relaxation of a hot carrier

EF
Mobility edge (charges can only move if near 
empty states)

ρ(ε ) = NV

2πσ 2
exp −

ε − ε0( )2
2σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(consequence of the central limit theorem)

Charge relaxes to ε∞

ε∞ =
ερ ε( )exp −ε / kBT( )dε

−∞

∞

∫

ρ ε( )exp −ε / kBT( )dε
−∞

∞

∫
= − σ 2

kBT
Mean equilibrium carrier energy—
Charges relax into the tail of the distribution

DOS:
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Mobility (at last!)
• We now have everything we need:

• Site occupation: fi(ε) from Fermi statistics
• Transfer rate: kij

• Site DOS: ρ(ε)

• As seen previously, mobility depends on k:
• But this is not possible to solve exactly.
• Based on Marcus theory (most applicable), including electric 

field effects we get (ouch!):

20

µ = q
3kBT

kET (p→ p ±1) a
2

2

µ ≈ µ0 exp − Eact

kBT
− 1
8q2

σ
kBT

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2 2q2

σ
kBT

⎛
⎝⎜

⎞
⎠⎟

3/2

− σ
kBT

⎛
⎝⎜

⎞
⎠⎟

1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

qaF
σ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Poole-Frenkel
type dependence

• At F=0, mobility activation ~ 1/T2  at low T, 1/T at high T
• Recall polaronic dependence follows ~1/T
• Monte-Carlo simulations show similar form

Fishchuk, I., et al. 2003. Phys. Rev., 67, 224303.
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Poole-Frenkel Effect

• Trap barrier lowering due to external field

21

µ ~ exp β F( )βF½
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Tests of mobility theory

22

1/T2 & F1/2 dependence

V2

GDM

Pasveer, W. F. et al, 2005. Phys. Rev. Lett., 94,
206601.
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Current and Conductivity
1. Ohm’s Law (gives DC mobility). 
• For a single carrier (holes in this case) in a uniform electric field:

• Gives the product pμ ⇒ requires independent determination of charge density.
• Ohmic regime identified by linear relationship between j and V.

2. Space charge limited current (gives DC mobility).
• When the injected carrier density pinj > p0 (the background charge density), 

charge accumulates at electrodes:

+ -

SCL

Ohmic
F(x)

x d0 23

𝑗 = 𝑞𝑝µ𝐹 = 𝑞𝑝µ
𝑉
𝑑
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Similar to Monte Carlo Expressions

24

	

µ(σ̂ ,Σ,F) = µ0 exp − 2
3 σ̂( )2( ) expC σ̂ 2 − Σ2( ) F 							Σ ≥ 1.5

expC σ̂ 2 − 2.25( ) F 				Σ < 1.5

⎧
⎨
⎪

⎩⎪

Widely used expressions for mobility in disordered systems based on Miller-Abrahams:
(fits transient characteristics as well)

C=3x10-4 cm½V-½

Positional disorder parameter

Energetic disorder parameter28 H. BASSLER 

Fig. 10. Mobility p vs. E l l 2  for a hopping system 
with fixed energetic disorder (3 = 3) and variable 
off-diagonal disorder (from [61]) 

10-'0 
0 0.5 2.0 1.5 2.0 

E1/2(MV1/2cm-1/2) - 
changes the p ( E )  pattern in a characteristic way. With increasing C the low-field portion 
of p ( E )  plots tends to bend upward yielding mobilities that increase with decreasing field. 
Within the lnp cc EL/' regime the values of the slope S decrease and eventually become 
negative (Fig. 10). This behavior can be explained in the following manner. Fluctuation of 
the overlap parameter Ti j  about a mean value translates into asymmetric variation of the 
factor exp ( -  T i j )  controlling the exchange rate of a charge carrier. The effect is reminiscent 
of percolation. While certain routes for a carrier will be blocked due to more unfavorable 
intersite coupling, easy channels are opened that overcompensate for the loss of the former. 
To first-order approximation one can describe the diffusion enhancement by replacing the 
distribution of overlap factors by the ensemble-averaged diffusion coefficient 

(12) (D) * ( ~ X P  [-2g(rill> 9 

U X 

Fig. 11. Schematic view of the different routes a charge carrier can 
follow to move from D to A. If the electric field acts on the D-A 
direction the jump with rate v1  occurs against the field direction 

~20% disorder

Charge Transport in Disordered Organic Photoconductors 31 

signature of hopping transport in a Gaussian DOS. Provided that the width of the DOS 
is temperature independent, which appears to be a reasonable approximation at temperatures 
sufficiently below the glass transition temperature, &* translates into a characteristic 
temperature T* = a/k6* which turns out to be the equivalent to the Gill temperature (see 
below). Note that (15) predicts a change of sign of the slopes of the In p versus E”’ 
relationship even in the absence of off-diagonal disorder. Hence, an earlier statement made 
in [61] has to be modified in the sense that the presence of off-diagonal disorder suppresses 
the temperature at which the sign reversal occurs, yet is not a necessary condition for its 
observation. Neither has a temperature dependent decrease of S to be taken as evidence 
for a temperature dependence of C. If C increased with temperature, this would cause an 
increase of the slopes aS/a6’ and aS/i3TP2, respectively. 

It is useful to discuss (15) in conjunction with related formulae described in the literature. 

10-3 c 

’= 329 K 
31 9 
309 
299 

289 
279 

269 

259 

249 

239 

229 

The first one is that of Gill 1691, who 
proposed describing the temperature and 
field dependences of the mobility in poly- 
(N-vinylcarbazole) by the empirical for- 
mula 

xexp __ 

(16) 
where A ,  is a zero-field activation energy, 
p, the pre-factor mobility, and Tff is 
defined by l/& = 1/T - l/T*. Gill se- 
lected this functional form to account for 
the fact that In p ( E ,  T )  versus T-’ plots 
intersect at a finite temperature T*. Equa- 
tion (16) predicts that the field depend- 
ence becomes negative for T > T*. This 
equation, however, has no theoretical 
justification. 

In a study of hole transport in p- 
diethylaminobenzaldehyde - diphenyl- 
hydrazone-doped polycarbonate, Schein 
et al. [5] suggested factorizing the field 
and temperature dependences of the hole 

(El , 

Fig. 14. Hole mobility in TAPC/polycarbo- 
nate against PI2, parametric in temperature 
(from [30]) 

Bässler, H. 1993. Phys. Stat. Sol., 175, 15.

TAPC/polycarbonate

σ̂ = σ
kBT

   
µ0 ∼

J 2

F 2
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Space Charge Limited Current
• In the space charge regime, we make the following assumptions to solve j vs. V :

• pinj > p0

• Only one carrier type is present
• µ ≠ μ(F) (Field-independent mobility)
• Free carrier distribution follows Boltzmann statistics
• Trapped charge occupation defined by Fermi statistics
• F is large enough for drift (and not diffusion) to dominate
• Field not so large that field emission is important

• In 1D, Gauss says:

• ε=ε0εr

• Current in the absence of trapped charge, pt(x): 

• Now: 

• Since j is constant across layer

dF
dx

=
q pinj (x)+ pt x( ) + p0( )

ε
≈
qpinj (x)

ε

j x( ) = qµp pinj x( )F x( )
dF2 x( )
dx

= 2F x( ) dF x( )
dx

=
2qpinj x( )F x( )

ε
=
2 j x( )
εµp

⇒ F2 x( ) = 2 jx
εµp

25(This is current continuity)

(trap free case)
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j-V in the SCL regime

F2 x( ) = 2 jx
εµp

⇒ F x( ) = 2 jx
εµp

Now potential is:

Integrating between 0 < V < Va and 0 < x < d

We obtain: 

Giving the Mott-Gurney relationship:

Note the absence of p! 
⇒ Only need the dielectric constant and the film thickness. 

Use the ohmic region of the j-V curve to determine p0.

− dV
dx

= F x( )

Note: F(x)~x1/2  vs. F(x)= constant for Ohmic

j = 9
8
µpε

Va
2

d 3

26

𝑉!="
#

"$%!

&'"
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SCL Current in PTCDA

Forrest, S. R., Kaplan, M. L. & Schmidt, P. H. 1984 J. Appl. Phys., 55, 1492.

Glass

PTCDA

Va

gnd
To find background carrier 
density:

At Vx:  j(ohmic)=j(SCL)

⇒ qnµVx
d

= 9
8
µε Vx

2

d 3

⇒ n = 9
8
ε
q
Vx
d 2

27
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The truth is in the data

28

j~V4

This isn’t simple SCL current,
in which case j~V2

This is SCL in the presence of a high density of traps

Let the data speak to you, not vice versa
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But what happens if things aren’t so simple?
• We have assumed no traps. In organics, this is not often the case due to 

static disorder (i.e. defects in the solid, stacking faults). 

• Simplest case: A single discrete, shallow trap where

• Then you can show: 

Ø That is, the mobility is now reduced by Θ

• More often there is an exponential distribution of traps, in which case we 
have trap-filled limited conduction:

• m=Tt/T where Tt is the characteristic trap temperature
• Define

• Leading to:

p0
pt

=Θ <<1

j = 9
8

Θµp( )ε Va
2

d 3

jTFL = qµNHOMO
εm

q m +1( )Nt

⎡

⎣
⎢

⎤

⎦
⎥

m
2m +1
m +1

⎡
⎣⎢

⎤
⎦⎥

m+1 Va
m+1

d 2m+1

pt = Nt exp − EFp − EHOMO( ) / kBTt( )
p = NHOMO exp − EFp − EHOMO( ) / kBT( ) = NHOMO exp − EFp − EHOMO( ) / kBTt Tt /T[ ]( )

p = NHOMO
pt
Nt

⎛
⎝⎜

⎞
⎠⎟

Tt /T

⇒ pt = Nt
p

NHOMO

⎛
⎝⎜

⎞
⎠⎟

1/m

29

Filled 
w. 
holes

EFp HOMO
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Examples of TFL-SCL

Alq3

M. Campos, Mol. Cryst. Liq. Cryst. 18, 105 (1972)

naphthalene

Multiple ohmic, SCL and TFL regions
P. E. Burrows, et al., J. Appl. Phys., 79, 7991 (1996).

30


