
Organic Electronics
Stephen R. Forrest

Week 1-4

Electronic structure of molecules
Born-Oppenheimer and the Franck-Condon 

Principle
LCAO – Calculating orbitals

Transitions and Fermi’s Golden Rule

Chapter 3.1 – 3.5.2

Optical Properties 1
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Objectives
• Optical properties are the core to understanding

molecules both independently, in solutions, and in 
solids
• We will spend approximately 8 lectures on 

developing the physics and understanding optical 
phenomena
• Primarily, our understanding is based on quantum 

mechanics (but not always)
• Our discussion will take the following path:
• Single molecules (and orbitals) ⇒pairs and small 

assemblies ⇒solids
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Electronic Orbitals
The Born-Oppenheimer Approximation and the Franck-

Condon Principle

• To calculate the wavefunction, we write the 
spinorbital wavefunction: 

• To make the problem of excited and ground state 
calculations tractable, we invoke the Born-
Oppenheimer approximation: 
• Electronic and nuclear motion are independent
• Wavefunctions and variables are separable

{ri}=r1, r2,….rN = all electron position vectors.
{Ri}=R1, R2,….RM = all nuclear position vectors.

Ψ ri{ }; R j{ }; Sk{ }( ) = Φ ri{ }; R j{ }( )σ Sk{ }( )

Electronic   Nuclear   Spin

3
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Singlet and triplet states

ψ (r1,r2;0,0) =
1
2
φa r1( )φb r2( ) +φa r2( )φb r1( )( ) α1β2 −α 2β1( )

(b)$

S=1$
mS=1$

S$

(a)$

S=0$
mS=0$

ms=)½$

z$ms=½$

S=1$
mS=0$

S=0$
mS=)1$

Triplet
S=1

ms=±1, 0

Singlet
S=0

ms= 0

Spatially symm. Spin antisymm.

Pauli Exclusion Principle: Total wavefunctions must be antisymmetric

In phase180o out of phase

4

√

√

S=1



Organic Electronics
Stephen R. Forrest

Answers to a couple of questions
• Why do triplet states have lower energy than singlets?

• Why does the wavefunction have to be antisymmetric to agree with Pauli 
exclusion?
• Take two particle wavefunctions, 
• The total wavefunction is a linear combination of the two under exchange:

• If               the antisymmetric wavefunction (-) vanishes but the symmetric one (+) 
does not.

Singlet

Triplet
Exchange energy

Singlet ground state
Symmetric spatial states have electrons in 
closer proximity than antisymmetric states 
èlarger Coulomb repulsive energy

Scanned by CamScanner

Singlet Triplet

1 , 2

tot = constant × 1 2 ± 2 1{ }
1 = 2

5Pauli Exclusion demands no two electrons occupy the same state⇒antisymmetric
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We can write anti-symmetric functions in 
terms of determinants

det=0 if any two rows or columns are identical

More generally, for N electrons, we write the Slater determinant:

ψ r1,r2( ) = 1
2
det

Φ↑ r1( ) Φ↓ r1( )
Φ↑ r2( ) Φ↓ r2( )

ψ ri{ }( ) = 1
N!
det

Φa r1( ) Φb r1( ) .. .. Φz r1( )
Φa r2( ) Φb r2( ) .. .. Φz r2( )
.. .. .. .. ..
.. .. .. .. ..

Φa rN( ) Φb rN( ) .. .. Φz rN( )

B-O implies that the nuclear and electronic parts of the wavefunction are separable:
Φ ri{ }, R I{ }( ) = φe ri{ }, R I{ }( )φN R I{ }( )

Total Hamiltonian:

Just the electronic part:
 

HT = − !
2

2me

∇ri
2

i

N

∑ − !
2

2
1
mNI

∇R I

2

I

M

∑ + q2

4πε0
1

ri − rj
− ZI

ri −R I

+ ZIZJ

R I −RJI>J

M

∑
i,I

N ,M

∑
i> j

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

  

Heφe ri{ }; R I{ }( ) = − !
2

2me

∇ri
2

i

N

∑ + q2

4πε0
1

ri − rj
− ZI

ri −R Ii,I

N ,M

∑
i> j

N

∑
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
φe ri{ }; R I{ }( )=Eeφe ri{ }; R I{ }( )
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Solving for the orbitals

• This is solved by taking the product of the N-electron wavefunctions for an M-atom system: 

• But we still don’t know what the minimum energy nuclear configuration is—there can be one 
or many isomers at different energies!
• Isomer = each of two or more compounds with the same formula (e.g. C6H6) but a 

different arrangement of atoms in the molecule, and with different properties.

φe
0 ri{ }( ) = φe,i

0

i=1

N

∏ ri( )

Sc
an

ne
d 

by
 C

am
Sc

an
ne

r

Geometric
isomers

Scanned by CamScannerNuclear(Displacement(

M
ol
ec
ul
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(P
ot
en

3a
l(E
ne

rg
y(
(E

e)(

Inversion
isomers

NH3

Topological isomers: When the same molecule can have different topologies (i.e DNA can 
have both helices and knots). 
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Solving Schrodinger’s Equation
Convenient to introduce normal coordinates, Qk

Ø kth configuration of all the nuclei in the molecule
Ø Avoids having to consider the position of each individual nuclear position

Now problem reduced to electronic coordinates, ri, and relative nuclear coordinate, Qk.

Near equilibrium, the energy is:

8

Finding a solution to the isomer problem:
Example, HCN (             )

Choose two nuclear coordinates, for C-N and H-C.
Solve Schrodinger’s equation along two trajectories until

a minimum is found, defining equilibrium nuclear 
distances.

The total energy of the molecule is then:

H-C ≡N

	
	

	
	
	

HT = Te(r)+TN (Q)+Ve(r)+VeN (r,Q)+VN (Q)

ET = Ee(0)+VN (0)+ ΔEe(Q)+ ΔVN (Q)

Electron    Nuclear   interelec.   Elec-nuclear  Nuclear
KE KE        repulsion      attraction    repulsion
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Luckily, we only have to worry 
about things near equilibrium

 
EN , j = ! ω l Ee, j( )

l=1

3N−6

∑ nl Ee, j( ) + 12
⎡
⎣⎢

⎤
⎦⎥

ΔQ = Q1 −Q0

9

• Recall, the molecule is held together by covalent, i.e. Coulomb forces.  And near 
the bottom of the potential (in relative coordinates!) it “looks” like a parabola
• SHO, with solutions for the jth electronic level, 
• lth normal mode:

• Things to notice:
• A shift in nuclear coordinates between the ground

and first excited state (                          )
- Only relative coordinates (Q) important.
- Equal spacing of levels near bottom of an electronic manifold

Ø These “inner levels” called vibronics
Ø They are phonon modes (e.g. C-H, C-C, C=C …. Vibrations)

- Vibronics “compress” as we go to higher energies.
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Intramolecular phonons

http://www.acs.psu.edu/drussell/Demos/MembraneCircle/Circle.html 10

Think of benzene as an approximately circular drumhead
These represent several of the lowest possible normal vibrational modes
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The Morse Potential

r0	

V0				

nk=0	

nk=1	

nk=2	

nk=3	

nk=4	

nk=5	
nk=6	

0			

Po
te
n/

al
	E
ne

rg
y	
(V
(r
))	

Internuclear	Separa/on	(r)	

Dissocia/on	Energy		

Morse	

Harmonic	

V (r) =V0 1− exp −α r − r0( )⎡⎣ ⎤⎦( )2

α = k0 / 2V0

V0=well depth
k0=force constant

• Comparison to SHO
o Energy levels at bottom of well almost the same
o SHO is an infinite harmonic potential, Morse is a finite anharmonic potential
o There is a maximum vibronic energy level (you can solve it!)
o Both are still quite approximate, Morse is an improvement

-The simple parabola is not particularly 
accurate ⇒Morse potential

11What are the normal mode frequencies?
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Another important approximation
• Franck-Condon Principle
• Molecules relax after excitation, but we assume that 

relaxation takes place on a time scale much slower than the 
excitation (i.e. absorption or emission of a photon).
• That is, the electron distribution changes upon excitation 

much faster than the nuclear positions change (they are 
“static” during transitions) due to their larger mass.
• Electronic time scales: femtoseconds
• Nuclear time scales: picoseconds (phonon lifetime)

• Implication: All transitions are vertical

12
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Electronic State Filling

HOMO= highest occupied molecular orbital (e.g. valence energy)
LUMO= lowest unoccupied molecular orbital (e.g. conduction energy)

HOMO and LUMO are “frontier orbitals”

Vacuum

HOMO	

HOMO-1	

HOMO-2	

HOMO-3	

HOMO-4	

LUMO	
LUMO+1	
LUMO+2	

LUMO+3	

Ground	 1st	excited		
singlet	

1st	excited		
triplet	

Anion	 Ca?on	

Eg	

.

.

.

Energy Gap

EG=ELUMO-EHOMO
(unrelaxed)

13

Aufbau principle: “Building up” principle – state filling begins at the lowest level
(HOMO-N) and continues until it fills up the highest (HOMO) state.
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Linear Combination of Atomic Orbitals (LCAO)

• To determine the energies of all the orbitals, we start by assuming that they are 
simply linear combinations of electronic states of the comprising atoms

• Original atomic orbitals only slightly perturbed when placed within the molecule
• First order perturbation theory applies
• M atoms, L orbitals

• The most important electron is the last electron that completes the valence 
states of the molecule.

• But B-O says that nuclear positions are separable:

ψ i ri( ) = cijkφ jk ri −R j( )
k=1

L

∑
j=1

M

∑

Unperturbed 
atomic orbitals

Molecular 
orbitals

ψ i ri( ) = cir
r=1

M

∑ ′φr ri( )

New, electron-only
atomic orbitals

14
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Calculating Orbitals
φ jk r( )

φ r( ) = xaybzc exp −αr2( ) ; (a,b,c) contain wavefunction symmetry

	φ(r,θ ,ϕ ) = Rnl (r)Ylm (θ ,ϕ ) = 2α( )n+
1
2 2n( )!⎡⎣ ⎤⎦

−1
2 rn−1 exp(−αr)

We need to find a basis set,  
Typically assume Gaussian orbitals, 

Or Slater (hydrogenic) functions:

Gaussian is easy to use but inaccurate
near origin and as r→ large

Now we can solve for the orbitals using Schrodinger:

The overlap between the initial and final wavefunctions is:

Hrr = Coulomb integral (provides kinetic and Coulomb electronic potential energies
Hrs= Resonance integral (provides energy in the region of overlap between 

cr φs
' H int φr

' − E φs
' φr

'( )
r=1

M

∑ = 0

Srs = φ
s

' φ
r

'

 ′φs  and ′φr15
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Calculating Electronic Orbitals, cont’d.

• This amounts to solving the secular equation:
• H, S matrices

• Example: H2
+ molecule

det H − EiS = 0

Hrs = Hsr = φr
' H φs

' = E1s +
q2

4πε0 Rr −Rs

⎡

⎣
⎢

⎤

⎦
⎥Srs −

q2

4πε0
φr
' 1
rr −Rs

φs
'

Diagonal

Off-diagonal

Hrr = φr
' H φr

' = E1s −
q2

4πε0
φr
' 1
rr −Rs

φr
' + q2

4πε0 Rr −Rs

e- with own
proton

e- with other
proton (     ): 
Coulomb

2 proton interactions

 
!j

 
Hrs = Hsr = E1s +

q2

4πε0 Rr −Rs

⎡

⎣
⎢

⎤

⎦
⎥Srs − !kOr, simply: overlap

 
E∓ = E1s +

q2

4πε0 Rr −Rs

⎡

⎣
⎢

⎤

⎦
⎥ ±
"j ∓ "k
1∓ Srs

Full solution from secular eq.:

Energies are split! One is for the bonding orbital (1σ) and the other for the anti-bonding orbital (2σ)

Splitting term

16
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H2
+ molecular orbitals

• Wavefunctions split by Coulomb repulsion

ψ = 1
2

φr
' +φs

'( )1σ:

(cr=cs=1)

2σ:

(cr=-cs=1)

ψ = 1
2

φr
' −φs

'( )

En
er
gy
'

E1s' E1s'

E+'

E+'

1σ'

2σ'

Splitting increases
as distance decreases

Anti-bonding

Bonding

17

(2 degenerate levels, E1s)

anti-bonding orbital

bonding orbital

electron density concentrated 
between ionic cores

electron density concentrated 
repelled
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Hybridization of bonds
• When s and p bonds co-exist on the same molecule, they become mixed; or 

hybridized.

• The LCAO method is used to calculate these resulting hybrid atomic orbitals (HAOs).

• Simple example: Ethyne (sp1 hybridization)
• Each spherically symmetric H 1s state linearly combines with a C 2s and 2px orbital to 

form two hybrid sp hybridized orbitals. 
• The 2px-orbital is not spherically symmetric. Thus, it is oriented along the x-axis, and 

contains electron density contributed from both the s- and p-orbitals. 

 HC ≡ CH

18
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Hybridization of ethyne: Step by Step
• Ethyne comprises H (1s1) and C (1s22s22px

12py
1).

• The C atom does not have enough unpaired electrons to form four bonds (1 to the H and 3 to the other C)

• ⇒ It must promote one of the 2s2 pair into the empty 2pz orbital. 

• Each carbon joins to 2 other atoms ⇒they only hybridize 2 of the orbitals.

• They use the 2s electron and one of the 2p electrons, leaving the other 2p electrons unchanged. 

• The new hybrid orbitals formed are called sp1 hybrids.

• The two green lobes are two different hybrid orbitals – Separated as far from each other as possible.

19
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Hybridization of ethyne, cont’d
• The atomic orbitals that point towards each other merge to give molecular orbitals, each 

containing a bonding pair of electrons. 

• These are sigma bonds

• The various p orbitals are now close enough that they overlap sideways.

• Sideways overlap between the two sets of p orbitals produces two π-bonds. 

• π-bonds are at 90° to each other - one above and below the molecule, and the other in front 
of and behind the molecule.

20
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sp hybridized wavefunctions
• LCAO combines to form the following hybrid wavefunctions

• Subject to the boundary conditions:

• Giving the final two hybrid wavefunctions:

ψ 1
H = c1s φs + c1p φpz

 ψ 2
H = c2s φs + c2 p φpz

ψ 1
H ψ 2

H = c1sc2s + c1pc2 p = 0
orthonormality

ψ 1,2
H ψ 1,2

H = c1s
2 + c1p

2 = c2s
2 + c2 p

2 = 1

Symmetry ⇒c1s= c2s and c1p= -c2p

ψ 1
H = 1

2
φs + φpz( )

ψ 2
H = 1

2
φs − φpz( )

These are located on the x-axis along the               axis  C ≡ C

[Recall ]ψ i ri( ) = cir
r=1

M

∑ ′φr ri( )

21
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Application to large molecules
The Hückel Approximations

• The different s and p-orbital symmetries allow for separation of wavefunctions,        &            
, such that the total wavefunction is

• Nearest neighbor interactions are set equal to a constant. That is Hrr =α, and Hrs=𝛽 for 

|r-s|=1, otherwise Hrs=0. 

• α and 𝛽 are negative (bonding) energies. 

• α is simply an energy offset

• 𝛽 is the energy due to the hybridization of the orbitals themselves.

• The overlap integrals , where δrs =1 when r=s; and δrs =0 otherwise.  

• This is the most problematic of the assumptions since the overlap from adjacent orbitals can 
be substantial; ≈0.2 or larger. 

• Now the secular equation becomes simply:

ψσ

ψπ ψ T =ψσψπ

det (α − E)I+ βB = 0 where I=δrs, and B=δr,r±1.  
22

Srs = ′φs ′φr = δ rs
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LCAO applied to solve for sp2 and 
sp3 hybridized orbitals

• sp2: ethene H2C=CH2

• sp3: methane  CH4

3 solutions
p-orbitals maintain planarity

4 solutions

23
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Benzene (again!)

det

α − E β 0 0 0 β
β α − E β 0 0 0
0 β α − E β 0 0
0 0 β α − E β 0
0 0 0 β α − E β
β 0 0 0 β α − E

= 06x6 Secular determinant:

Yields valence solutions:

Constant offset
α ,β < 0

24

u=ungerade; spatially odd
g=gerade; spatially even

 E a1( ) =α + 2β;  E e2( ) =α + β;  E e1( ) =α − β;  E b1( ) =α − 2β

𝐻 − 𝐸 𝜓 = 0
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This is getting complicated
(There must be an easier way)

• Not really.

• But for some molecules (e.g.catacondensed ring aromatics) we can use 
perimeter-free electron orbital model.  More intuitive than accurate.

• Approximate the molecule by a ring of effective diameter ~ no. of phenyl groups

Not too bad!
25

• l = 0 has 2 electrons (2 spins)
• l > 0 each has 4, (2 degenerate counter-propagating waves+ 2 

spins) etc.
• Fill molecule to get to the highest l via aufbau principle
• e.g. benzene has 6 π-electrons (l = 1) called f-state

lth orbital wavefunction

 
El =α + !2

2mr2
l2

ψ l θ( ) = 1

2π
exp ilθ( )



Organic Electronics
Stephen R. Forrest

Density Functional Theory
• The primary approach to calculate molecular levels is density functional 

theory

• Replaces electron distribution by an electron density functional

• Then energy is a function of local charge density

• With exchange-correlation energy (the outer electrons interact and their 
collective motion is cooperative) : local density approximation

ρ(r) = φe(r)
2

i=1

n

∑

 
E(ρ) = − !

2

2me

φe
*(r)∇2φe

*(r)d 3r − ZIq
2

4πε0 r −R I
∫

I=1

M

∑∫
i=1

n

∑ ρ(r)d 3r + 1
2

ρ(ri )ρ(rj )
4πε0 ri − rj
∫∫ d 3rid

3rj + EXC (ρ)
i=1

i≠ j

∑

EXC = ρ r( )ε∫ ρ r( )( )d 3r

Single electron exchange energy

26

The trick is finding the correct basis set and density functional: Semi-empirical
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Examples: Anthracene & Pentacene

(c)$HOMO$

(f)$LUMO$(e)$HOMO$

(d)$LUMO$

(b)$HOMO.14$(a)$Structure$

LCAO

DFT

LUMO HOMO

de Wijs et al. (2003)Synthetic Metals, 139, 109.Peumans, P. 2004. Organic thin-film photodiodes. 
Ph.D., Princeton U.
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Transitions between levels
• Once we have the electronic structure, we can predict the most 

important optical property: the rate (i.e. the probability, strength) of a 
transition between states
• Predicts emission and absorption spectra
• Can predict exciton states and properties

• The cornerstone of our analysis: Fermi’s Golden Rule
• From time dependent perturbation theory
• Easy to use and understand

 
kif =

2π
!

ψ f H int ψ i

2
ρ Eif( )

M
if

2 = ψ f H int ψ i

2

Transition matrix element:

ρ(Eif) is the joint density of initial and final states of the wavefunctions, ψ i  and ψ f

28
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Electric dipole transitions are dominant

• Dipole interaction:

• But the dipole moment is:

• And then the matrix element is:

• But B-O says that the electronic and nuclear coordinates are separable:

• This leads us to transition selection rules.

• A transition is allowed as long as the transition matrix element is non-zero:

 Hµ = −µr,R iF

µr,R = µe + µN = −q rk − ZKRK (Q)
K
∑

k
∑⎡
⎣⎢

⎤
⎦⎥

µif = φe, f r,Q( )φN , f Q( ) µr,R φe,i r,Q( )φN ,i Q( )

µif = −q φ
N , f

∗ Q( )φN ,i Q( )dQ∫ φ
e, f

∗ r,Q( )rkφe,i r,Q( )d 3r
k
∑⎡

⎣⎢
⎤
⎦⎥
= µif ,e FCif

 
Mif = φe, f rf( ) r iF φe,i ri( ) φN , f Qf( ) φN ,i Qi( ) σ f S f( ) σ i Si( ) ≠ 0

Three rules: Spatial Nuclear Spin

See integral above 29
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Transition Selection Rules-I

• Spatial transition requires a parity inversion:
• Since the dipole moment has odd parity:

• Then for the integral:

we require transitions between states (ϕf(r) and ϕi(r)) of opposite spatial 
parity!

• E.g. one is a gerade, and the other an ungerade state under spatial inversion

 
Mif = φe, f rf( ) r iF φe,i ri( ) φN , f Qf( ) φN ,i Qi( ) σ f S f( ) σ i Si( ) ≠ 0

µr r( ) = −µr −r( )

 
φe, f rf( ) r iF φe,i ri( ) ≠ 0

30
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Transition Selection Rules-II

• Vibronic initial and final states must overlap:

• The degree of overlap is expressed by the Franck-Condon Factor:

• Note: orthogonality suggests that this integral always vanishes

• But: the nuclear wavefunctions are in separate electronic manifolds

• And: there is usually a “reconfiguration” of the molecule between 
ground and excited states (i.e. ΔQ=Qf-Qi≠0)

• So: ϕf(Q) and ϕi(Q) are no longer orthogonal and hence inter-vibronic
transitions are possible. (i.e. vibronics are mixed with electronic states)

FCif = φN , f Qf( ) φN ,i Qi( )
2

31

 
Mif = φe, f rf( ) r iF φe,i ri( ) φN , f Qf( ) φN ,i Qi( ) σ f S f( ) σ i Si( ) ≠ 0
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• Spin must remain unchanged during the transition

• Otherwise:

• Spectroscopically, we say that these transitions are allowed: 

• Note on spectroscopic notation: the highest energy state is always to the 
left.

• Thus: the transitions above are from a high initial to a low final energy state 
⇒ emission

• Absorption is written: 

Transition Selection Rules-III
 
Mif = φe, f rf( ) r iF φe,i ri( ) φN , f Qf( ) φN ,i Qi( ) σ f S f( ) σ i Si( ) ≠ 0

σ f S f( ) σ i Si( ) = 0

 Si → Sf  or Ti → Tf

 S1 ← S0  or T2 ←T1

32
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Summarizing the Transition Rules

	

Table 3.1: Summary of selection rules for electronic, nuclear and spin transitions for electric 

dipole interactions. 

Transition Selection rule Matrix Element Exception 

Between electronic 
states 

Parity of  and must 

be different (e.g. even  
odd) 

  Low symmetry 
molecules, two photon 
transitions, higher 
order multipoles 

Between vibronic 
states in different 
electronic manifolds 

Vibronic quantum number 
ni-nf=0 

  : nuclear 

reconfiguration 

between  

and   

Between spin states      Spin-orbit coupling 
Spin-spin coupling 

	

	 ‘to every rule there is an exception, including this one’

33


