Week 1-3

Calculating Equilibrium Crystal Structure Epitaxy Self-assembly

Chapter 2.5-2.8

Summary: Comparison of Bond Strengths

Bond strength determines the physical properties of materials

Bond type	Material	Melting point (°C)	Boiling point (°C)	Sublimation point* (°C)	Density ⁺ (g/cm ³) STP	Bond energy* (kJ/mol)
Covalent	Si	1414	3265		2.33	222
	Ge	938	2833		5.35	188
	GaAs	1238			5.32	210
lonic	NaCl	801	1413		2.17	787
	LiF	845	1676		2.64	1046
van der Waals	Anthracene	216	340		1.28	129
	Alq₃			350		162
	PTCDA			550	1.70	240
	Pentacene	>300		372	1.3	166
Hydrogen	Water	0	100		1	21
	Ammonia	-77	-33		0.82 (<i>s</i>)	46
	Ethanol	-114	78		0.79 (<i>I</i>)	38

*Approximate values are given for sublimation points and several bond energies.

+STP = standard temperature and pressure, s = solid, l = liquid.

Calculating Equilibrium Crystal Structure

- Why do we need to do this?
 - > Morphology determines optical and electrical properties of thin films
 - To understand anisotropies in dielectric constants, optical properties and transport, we must understand their relationships to structure
 - > Can use structure as a predictive tool for behavior of organics
 - Can use energetic calculations to find routes to improved structure via annealing, self-assembly, etc.
- But the problem requires large computational resources
 - Each molecule has shape
 - Molecules have 6 degrees of freedom to seek equilibrium (3 rotational, 3 translational)

Practical Solutions Require Significant Simplifications

Atom-Atom Potentials For Calculating Equilibrium vdW Crystal Structure

- Definition of a molecular solid: Atoms within a molecule are closer than nearest atoms on different molecules
- The atom-atom potential method is used to calculate equilibrium structures of molecular solids
 - Assumes that the total binding energy between molecules is equal to the sum of the vdW atom potentials of each molecular pair between these molecules.

 $U(R_{ij}) = \frac{1}{2} \sum_{m,n} U(r_{mn}) : \text{Total binding energy of two molecules separated by } R_{ij} = R_i - R_j$ with atom *m* on molecule *i*, *n* on molecule *j* with vdW attraction $U(r_{mn})$ $U_{crystal} = \frac{1}{2} \sum_{i \neq j} U(R_{ij}) : \text{Total crystal energy}$ $\frac{\partial U_{crystal}}{\partial R_{ij}} = 0 : \text{Equilibrium crystal configuration}$

- Atom-atom potential method too cumbersome for practical structures (6 dof/molecule!)
- Results in closest possible packing arrangements like ideal gas; maximizes coordination no.
- Assumes T=0 (model is static, no vibrational modes)
- Ignores U_{coul} , $U_{fixed dip}$, U_{hydro}
- Gives no clue as to how to <u>achieve</u> the structure
- ε,σ <u>isotropi</u>c but potentials are not
- $1/r^6 \Rightarrow$ nearest neighbors only
- No charge transfer between molecules

Examples: PTCDA and NTCDA

An example of close packing

Energy, Force, Elastic Constants of PTCDA

Molecular Dynamics Simulations

- Includes thermodynamics (i.e. temperature) in the atom-atom potential calculations to determine the likely lowest energy structures
- Calculationally intense

Example: Blending at a bilayer interface C₆₀ + BP4mPy with increasing annealing temperature.

Simulated annealing at an interface

ncreasing

Temperature

nic Electronics

orrest

Song & Forrest, Nano Lett. 16, 3905 (2016)

Bulk Heterojunction Formation: Annealing with Metal Stressor Cap

Peumans, et al. 2003. Nature, 425, 158.

Calculating annealing of a binary blend Qualitatively accurate representation by MD

Ag cap holds surface flat

Phase Segregation in Confined Films

SEM of cross-section shows increasing grain size

Peumans, P. et al. 2003. Nature, 425, 158.

Growth Modes of Materials: Epitaxy

• **Epitaxy**: the growth of a layer whose structure mimics that of the underlying lattice

Layer-by-layer (Franck-van der Merwe)

Wetting layer+islands (Stranski-Krastonow)

Island (Volmer-Weber)

PTCDA on Graphite

Kendrick, et al. Appl. Surf. Sci., 104/105 586 (1996)

Pentacene on polyimide

Yang, et al. Adv. Func. Mater., 15, 1806 (2005)

Oligoethylene on Ag

Zhong, et al. Phys. Rev. B, 77 113404 (2008)

Matthews-Blakeslee Strain Limit

At a critical degree of strain, the lattice relaxes via dislocations

Defect formation depends on bond strength, energy of defect formation, size of lattice

Commensurality Looking From the Top

Hiller, A. C. & Ward, M. D. 1996. Phys. Rev. B, 54, 14037.

Commensurality in X-section View

strain

equilibrium dimensions

Organic systems often incommensurate but align to substrate in order to minimize energy: Quasi-epitaxial growth

- Rarely is there an appropriate substrate to initiate epitaxy
- Growth can occur relatively free of defects (very large Matthews-Blakeslee critical thickness) when the force constant within a layer is greater than between the layer and substrate

 $\Rightarrow U''_{int ra} >> U''_{int er}$: Condition for **quasi-epitaxy**

- That is, lattice stiffness exceeds interaction between layers, allowing for slippage between epitaxy and substrate
- Fundamentally a "guided self-assembly" process
- Large molecules more readily form ordered layers on substrates due to overlap with multiple lattice constants

Lattices related by transformation matrix, **T**

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \mathbf{T} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \quad \mathbf{T} = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix}$$

-Commensurate: all t's are integers (i.e. det(T)= integer)

-**Coincident**: one direction of overlayer lies along a substrate direction (i.e. det(**T**)= simple fraction) -**Incommensurate**: no t's are integers (i.e. det(**T**)= irrational no.)

Quasi-epitaxial growth condition

Organic Electronics Stephen R. Forrest

Intralayer elastic constant (i.e. stiffness) greater than interlayer (with substrate) elastic constant

Larger molecules have lower intermolecular strain

Example of ordered q-e growth

- OVPD growth of DB-TCNQ on NTCDA on KBr
- Deep alternating layer stacks grown
- Congruent growth of the two component salt, DB-TCNQ observed
 (Congruent growth = ordered growth of 1 DB per 1 TCNQ molecule in each monolayer)
- 5 nm/layer
- Order maintained throughout stacks, orientation of one layer on another also maintained even when incommensurate
- Layer ordering measured using in-situ reflection high energy elctron diffraction (RHEED)

Measurement and atom-atom calculations predict similar lattice angle alignments

Measured lattice alignments

Lunt, et al, 2011. Rev. B, 83, 064114.

Atom-atom energy calculations show preferred interlayer orientations to minimize energy

Self-Assembly

Whitesides & Boncheva, PNAS, 99 4769 (2002)

Self-assembly

- The process where structure is guided by cohesion and symmetry of components
- It can be spontaneous
- It can occur over multiple length scales, from nano to cm.

SA of CdSe tetrapods

Nelson, et al. Nano Lett., 7, 2951 (2007)

Self-Assembly: Two Examples

Guided SA

- Functionalized molecules assemble side-by-side due to vdW attraction
- Directionality provided by end group functionalization

Ullman, Chem. Rev. 96, 1533 (1996).

McDermott et al., Nature 374, 517 (1995).

Photosynthetic complexes are assembled over multiple scales:

•

- Single porphyrin molecules at pico/nano scale
- Protein scaffolds (the spirals and colored strands) at 10 micron scale

The Universe of Structure

What we learned

- We introduced several classes of organic compounds useful in OE, and established a common language
- We quantified important binding properties of crystals (covalent, ionic, van der Waals, H-bonds) and the crystal structures they produce
- We showed how layers grown onto surfaces can replicate, or are guided by the underlying substrate structure (epitaxy, vdW epitaxy, quasi-epitaxy)
- We described the process of self-assembly resulting from a balance between cohesive and repulsive forces that can produce ordered structures over multiple length scales.

