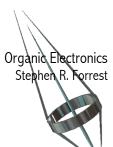
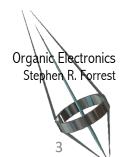

# Week 1-2


Establishing Common Language Crystal Structure and Binding

Chapter 1.4, 2.1-2.4

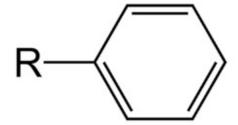


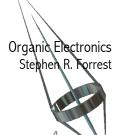
# Objectives: Structure of Organic Solids


- Introduce basic terminology of organic materials
- Discuss relationship of crystal structure to properties
- Introduce the basic terminology and concepts of crystals and crystal lattices
  - Fill in the gaps
- Discuss crystal binding
  - Physical properties and constants
- Learn about organic lattices and their equilibrium structures
  - Energy minimization
- Growth and epitaxy

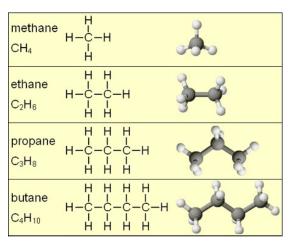


# First: Establishing a vocabulary

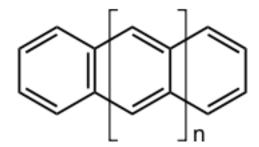

(Without a common language, there can be no common understanding)


- Illustration of molecular structure
- Basic molecular units and structures
- Standard terminologies




# Benzene, phenyl, aryl

- Benzene: C<sub>6</sub>H<sub>6</sub>
- **Phenyl**: the <u>phenyl group</u> or <u>phenyl ring</u> is a cyclic group of atoms with the formula  $C_6H_5$ . Phenyl groups are closely related to benzene.
- Aryl: A functional group of the form C<sub>6</sub>H<sub>5</sub> attached to a molecule







• Alkanes are the simplest organic molecules, consisting of only carbon and hydrogen and with <u>only single bonds</u> between carbon atoms. Alkanes are the basis for naming the majority of organic compounds (their nomenclature). Alkanes have the general formula  $C_nH_{2n+2}$ .



 Polyacenes: The acenes or polyacenes are a class of organic compounds, and polycyclic aromatic hydrocarbons made up of linearly fused benzene rings.

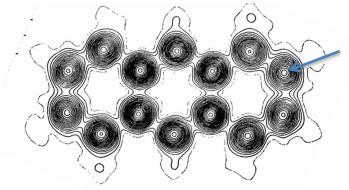




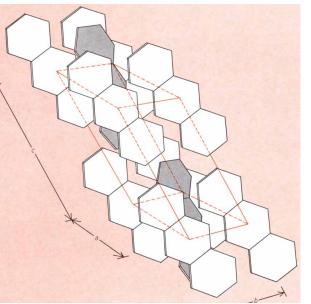
#### **Aromatics and Radicals**

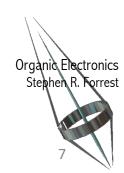
- Aromaticity: materials consisting of <u>closed carbon rings</u> where the C bonds are in <u>resonance</u>.
  - Double-single bond structure of the molecule allows the bond arrangement to alternate between C atom pairs in the ring.
  - To be aromatic the molecule must be <u>planar</u> and have <u>an ODD</u> <u>number of  $\pi$  electron pairs</u>. (see anaromatic)
- Polycyclic Aromatic Hydrocarbon (PAH): organic compounds containing only carbon and hydrogen—that are composed of multiple aromatic rings (organic rings in which the electrons are delocalized)
- Radical: A charged molecule that is either anionic or cationic. A
  cation is a <u>positively charged</u> molecule, and an anion is <u>negatively</u>
  charged. An excess electron is typically denoted by a solid dot.

Organia Electronics


#### Anthracene: A classic aromatic molecule

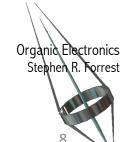
C<sub>14</sub>H<sub>10</sub>


It is a PAH with form C<sub>4n+2</sub>H<sub>2n+4</sub>

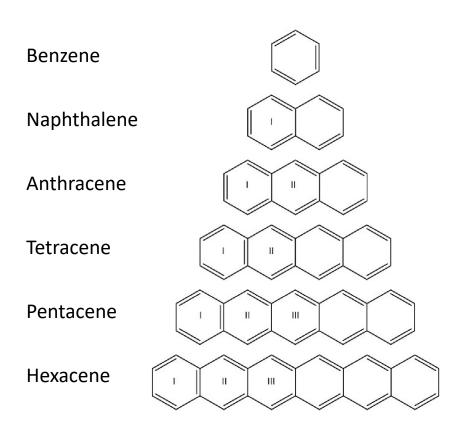

n=number of rings

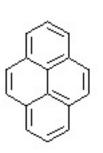




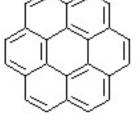

Electron density



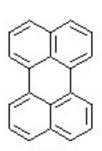




# Conjugation

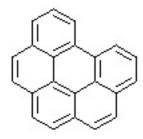
- a conjugated system is a system of connected <u>p-orbitals</u> with <u>delocalized</u> <u>electrons</u> in a molecule
- Conjugation lowers the overall energy of the molecule and increases stability.
- Conjugation is <u>conventionally represented</u> as having alternating single and multiple <u>bonds</u>.



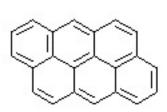

# A Few Polyacenes



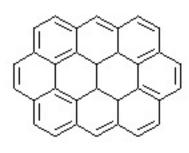




Pyrene




Coronene



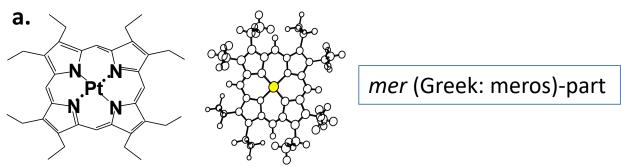

Perylene



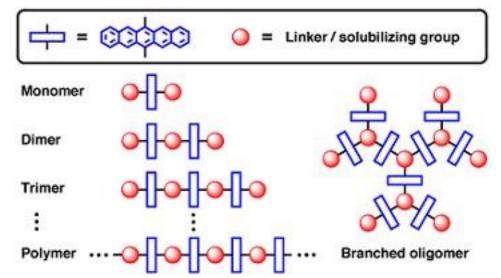
Benzoperylene

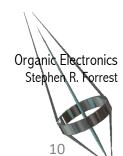


Anthanthrene

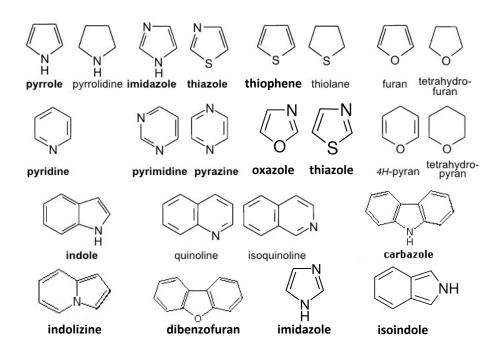



Ovalene



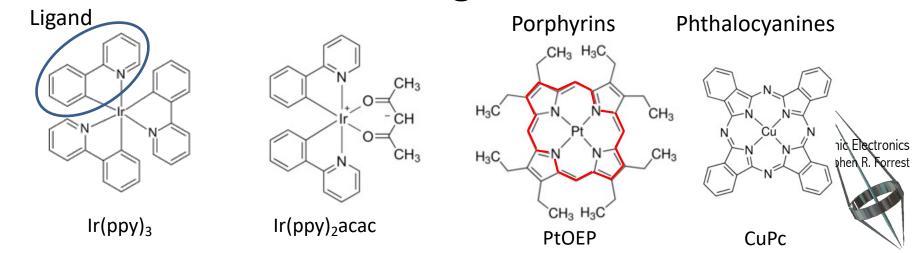


### Monomer, Oligomer

 Monomer: a molecular complex with a well-defined molecular weight that consists of a single irreducible unit



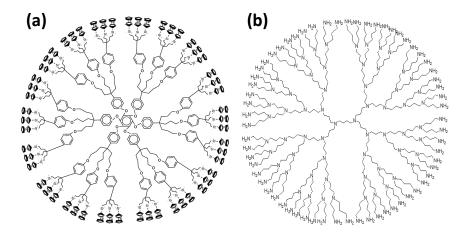

• Oligomer: a molecular complex that consists of a few monomer units, where the number of monomers is, in principle, not limited but is always well defined. (e.g. dimer, trimer, tetramer, etc.)



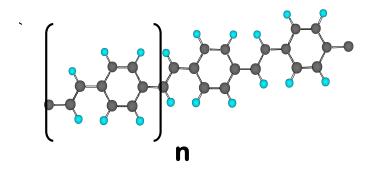



### Heterocycles



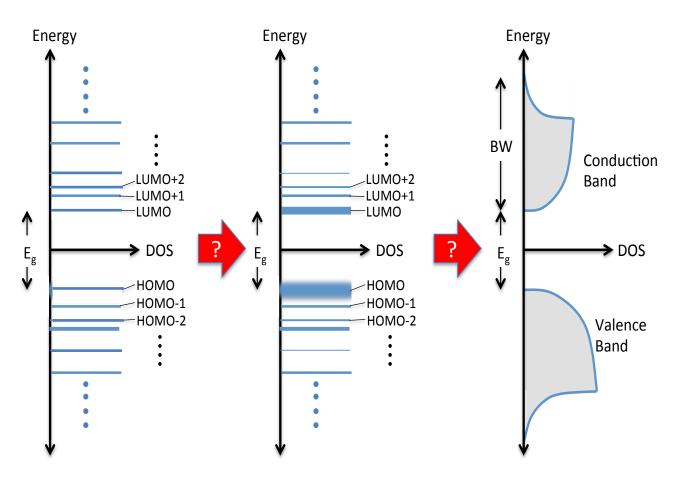

ligand: Latin: can be tied

### Metalorganics




### Dendrimer, Polymer

• **Dendrimer**: An oligomer that is built with repeat units radiating (like dendrites) from a central core. Each concentric repeat unit is a *generation*. (a) 54 ferrocene (so named due to the 54 ferrocene groups on its periphery), and (b) a 4<sup>th</sup> generation dendrimer.



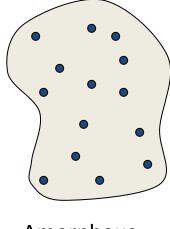

• **Polymer**: a molecular complex consisting of an undefined number of monomeric repeat units and hence undefined molecular weight.



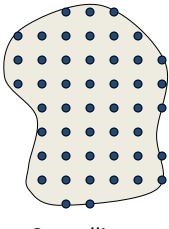


# At what point does the molecular picture give way to the solid?

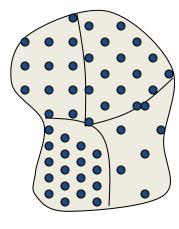





# **Crystal Morphologies**


#### Structure determines electronic properties

- Electrical conduction
  - Range from conducting to insulating
- Solid state: not liquids or gases
- Organics found and exploited in all morphological types


#### Types of solids



**Amorphous** 



Crystalline

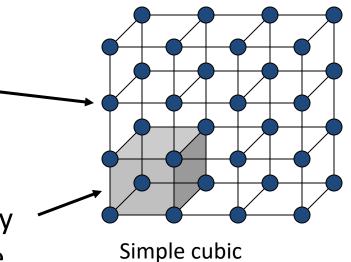


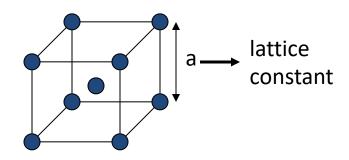
Polycrystalline

### Crystal Structure

#### <u>Lattice</u>

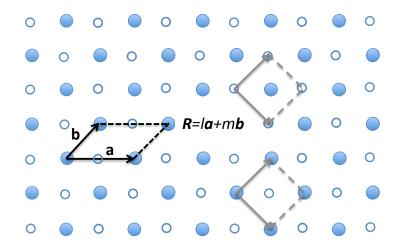
Periodic arrangement of atoms in a crystal


#### Unit cell


Small volume of crystal that may be used to reproduce the entire crystal—space filling

#### Primitive unit cell

**Smallest** unit cell that describes the crystal


Lattice constant is a *material parameter* 





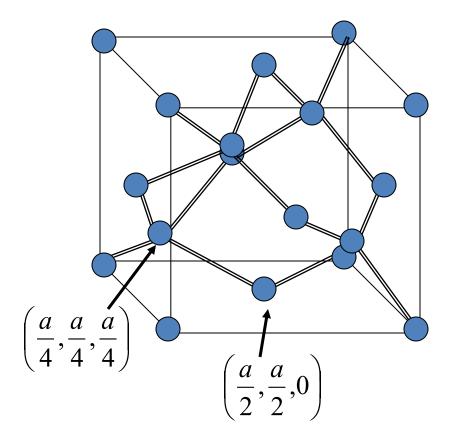
Body centered cubic (BCC)


### Lattices



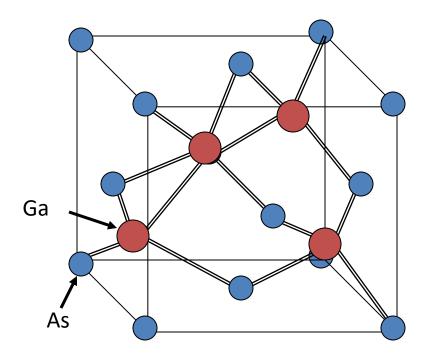
Translation vector: R=/a+mb+nc

A translation vector moves a **R** point to an equivalent point in the lattice


Volume:  $V_{Cell} = \mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})$ 

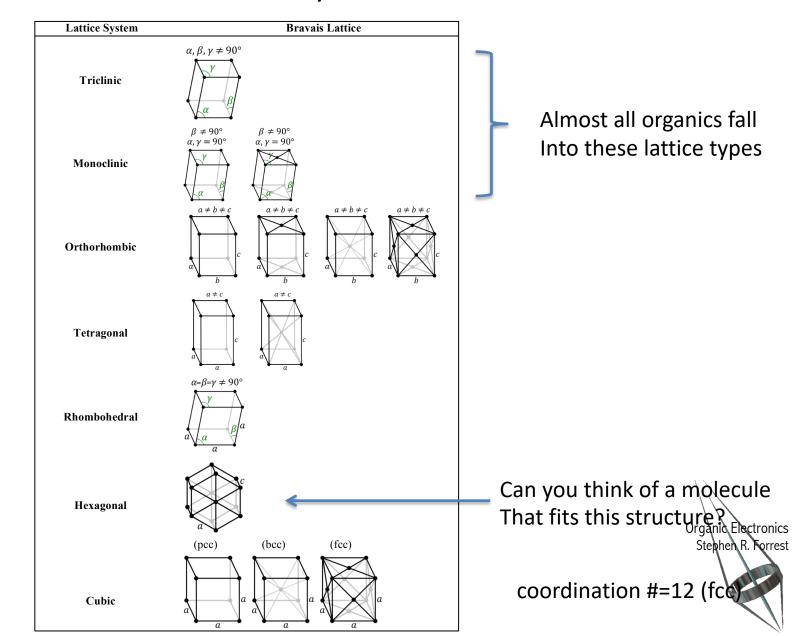


### Common Semiconductor Crystal Structures


#### **Diamond**

(Si, Ge)




#### Zinc Blende

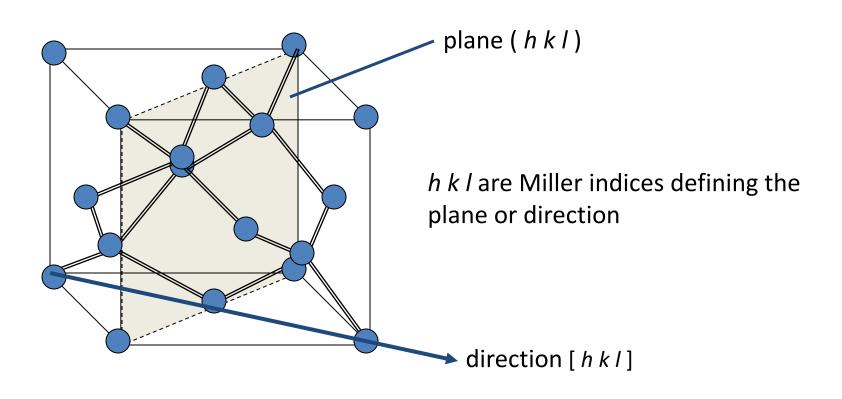
(GaAs, InP, AlSb, ...)



### **Bravais Lattices**

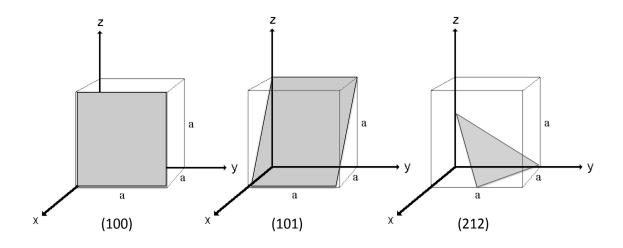
These lattices define the crystal structure




# Reciprocal Lattice

- Condition of self transformation:  $\psi(\mathbf{r}) = \psi(\mathbf{r} + \mathbf{R}) \sim e^{i\mathbf{G} \cdot \mathbf{r}} = e^{i\mathbf{G} \cdot (\mathbf{R} + \mathbf{r})}$
- Then **G** is the reciprocal lattice vector:  $\mathbf{G} \cdot \mathbf{R} = 2\pi$
- The reciprocal lattice defined by G, has an <u>identical</u> symmetry to the physical lattice defined by R.
- It is then straightforward to show that the primitive reciprocal lattice vectors are defined by the following relationships:  $\bar{\mathbf{a}} = 2\pi \frac{\mathbf{b} \times \mathbf{c}}{V_{Cell}} \quad \bar{\mathbf{b}} = 2\pi \frac{\mathbf{c} \times \mathbf{a}}{V_{Cell}} \quad \bar{\mathbf{c}} = 2\pi \frac{\mathbf{a} \times \mathbf{b}}{V_{Cell}}$
- What is the relationship between the unit cell volume in reciprocal to real space?

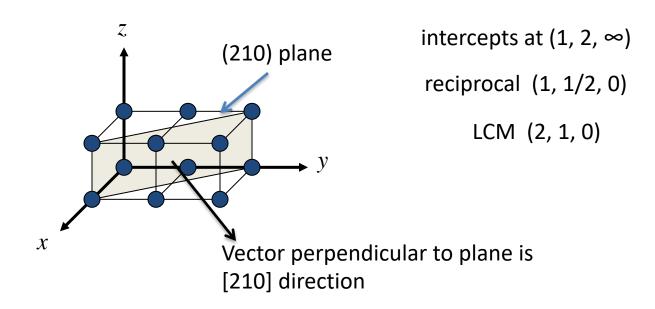



#### Miller Indices

Need a method to describe crystalline direction/planes

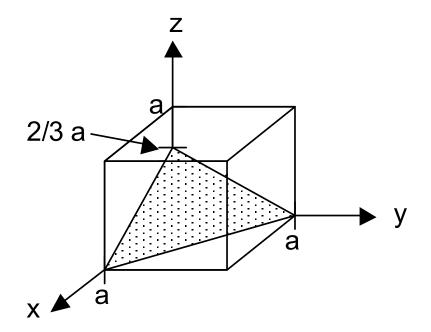


# Defining Crystal Directions and Planes


#### Miller indicies



- Miller indices: *h, k, l,* are the <u>lowest integers</u> that are the <u>inverse of the intercepts</u> between the plane and the axes
- (a,b,c) define plane
- {a,b,c} define set of equivalent planes (e.g. (100), (010), (001), etc. for cubic lattice)
- [a,b,c] for lattice direction
- <a,b,c> for set of equivalent lattice directions

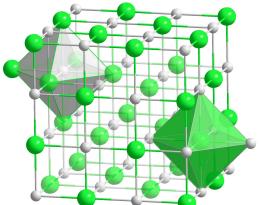

### **Determining Miller Indices**

- 1. Find intercepts (as multiple of a lattice constant)
- 2. Take reciprocal
- 3. Multiply by lowest common denominator



# Example: Miller Index

Determine the representation of the plane below

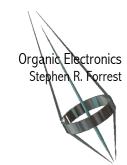



# **Ionic Bonds**

$$U_{ij}(\mathbf{r}) = \pm \frac{q^2}{4\pi\varepsilon_0 \left| \mathbf{r}_i - \mathbf{r}_j \right|}$$

For a solid, pairwise ionic interactions must be summed over all N ions, which leads to a net attractive energy of:

$$U_{attract} = \frac{q^2}{4\pi\varepsilon_0} \sum_{i,j}^{N} \left( \frac{1}{\mathbf{R}_{ij}} - \frac{1}{\left| \mathbf{R}_{ij} - \mathbf{a} \right|} \right)$$
 Similar Oppositely atoms charged atoms

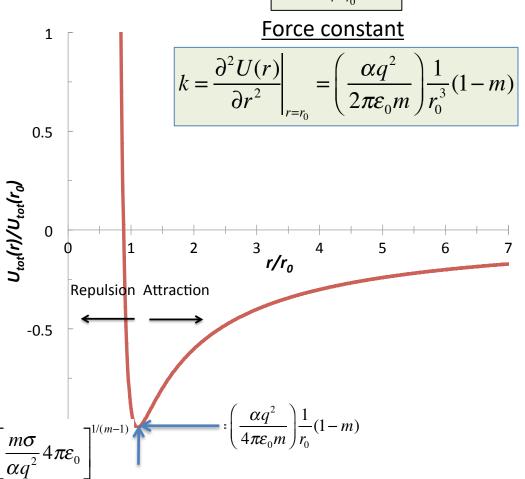



NaCl (fcc)

TTF-TCNQ: charge transfer complex

$$U_{tot}(r) = \frac{\sigma}{r^m} - \frac{\alpha q^2}{4\pi\varepsilon_0} \frac{1}{r}$$

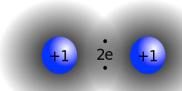
Madelung Constant 
$$\Rightarrow \alpha_{fcc} = \left(6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{2} + \dots\right) = 1.7476$$




# **Equilibrium Crystal Structure**

$$U_{tot}(r) = \frac{\sigma}{r^m} - \frac{\alpha q^2}{4\pi\varepsilon_0} \frac{1}{r}$$

$$\left. \frac{\partial U_{tot}}{\partial r} \right|_{r=r_0} = 0$$


Equilibrium condition

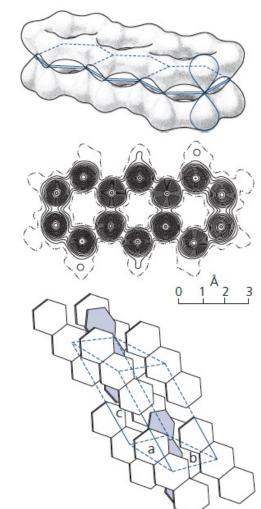




# **Covalent Bonding**

Shared electron systems between ionic cores

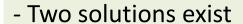


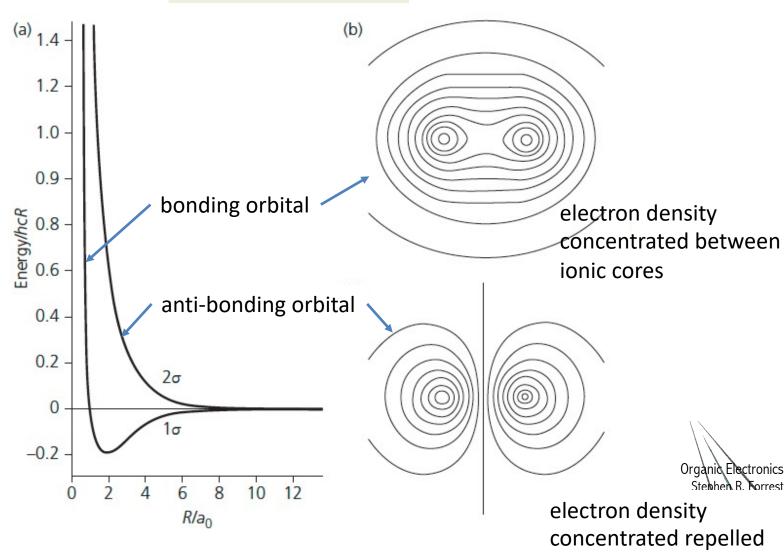

H:H H - H H<sub>2</sub>, Si, Ge, C....

$$H_{2}^{+} \qquad H\Psi(\mathbf{r},\mathbf{R}) = E\Psi(\mathbf{r},\mathbf{R})$$

$$H = -\frac{\hbar^{2}}{2m}\nabla_{\mathbf{r}}^{2} - \sum_{i} \frac{\hbar^{2}}{2M_{i}}\nabla_{\mathbf{R}_{i}}^{2} + V(\mathbf{r},\mathbf{R}_{i})$$

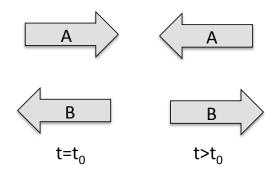
$$V(\mathbf{r},\mathbf{R}_{1},\mathbf{R}_{2}) = -\frac{q^{2}}{4\pi\varepsilon_{0}} \left(\frac{1}{|\mathbf{r}-\mathbf{R}_{1}|} + \frac{1}{|\mathbf{r}-\mathbf{R}_{2}|} - \frac{1}{|\mathbf{R}_{1}-\mathbf{R}_{2}|}\right)$$


It's complicated as N increases!

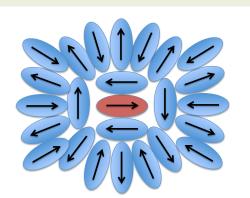



Organic Electronics Stephen R. Forrest

Organic Molecules with C-C bonds e.g. Anthracene


# Solutions to the H<sub>2</sub><sup>+</sup> Molecule





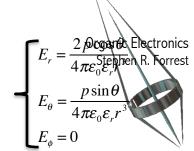

# van der Waals bonding

• Purely electrostatic *instantaneous* induced dipole-induced dipole interaction between  $\pi$ -systems of nearby molecules.



Medium around the dipole is polarized




#### Multipole potential is from expansion

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0 \varepsilon_r} \left[ \frac{q}{r} + \frac{\mathbf{p} \cdot \mathbf{r}}{r^3} + \frac{1}{2} \sum_{i,j} Q_{ij} \frac{r_i r_j}{r^5} + \cdots \right]$$

Monopole dipole quadropole

 $\mathbf{p} = \int \mathbf{r} \rho(\mathbf{r}) d^3 \mathbf{r}$  : Dipole moment

$$\mathbf{F}(\mathbf{r}) = \frac{3\hat{\mathbf{n}}(\mathbf{p} \cdot \hat{\mathbf{n}}) - \mathbf{p}}{4\pi\varepsilon \varepsilon r^3} : \text{ Field from dipole moment}$$



# Dipole interactions

$$\mathbf{E}(\mathbf{r}) = \frac{3\hat{\mathbf{n}}(\mathbf{p} \cdot \hat{\mathbf{n}}) - \mathbf{p}}{4\pi\varepsilon_0 \varepsilon_r r^3}$$



#### **Fixed dipoles**

$$U = -\mathbf{p} \cdot \mathbf{F}(\mathbf{r})$$

$$U(r_{12}) = \frac{\mathbf{p}_1 \cdot \mathbf{p}_2 - 3(\hat{\mathbf{n}}_{12} \cdot \mathbf{p}_1)(\hat{\mathbf{n}}_{12} \cdot \mathbf{p}_2)}{4\pi\varepsilon_0\varepsilon_r r_{12}^3} = \frac{p^2}{4\pi\varepsilon_0\varepsilon_r} \left\{ \frac{\hat{\mathbf{p}}_1 \cdot \hat{\mathbf{p}}_2}{r_{12}^3} - \frac{3(\mathbf{r}_{12} \cdot \hat{\mathbf{p}}_1)(\mathbf{r}_{12} \cdot \hat{\mathbf{p}}_2)}{r_{12}^5} \right\}$$

For  $p_1 = p_2$ 

Applying Boltzmann statistics to the energy as a function of angle, it can be shown:

Keesom interaction: 
$$U(r_{12}) = -\frac{2p^4}{3(4\pi\epsilon_0\epsilon_r)kTr^6} = -\frac{A_{DD}}{r^6}$$

#### Important relationships:

$$U = -\frac{1}{2}kx^2$$
 (in one dimension for an SHO)

$$\Rightarrow U' = F = -kx$$

$$\Rightarrow$$
  $U'' = -k$  = force constant = compressibility of the solid

$$\Rightarrow$$
 Bulk modulus =  $B = Vol(U'') = -Vol(k)$ 



# Van der Waals interaction

For van der Waals, the induced dipoles are parallel  $(\hat{\mathbf{p}}_1 = \hat{\mathbf{p}}_2)$ 

Then our energy equation reduces to:  $U = \frac{p_1 p_2}{4\pi\varepsilon_0\varepsilon_r r_{12}^3} \{1 - 3\cos\theta\} \approx -\frac{p_1 p_2}{2\pi\varepsilon_0\varepsilon_r r_{12}^3}$ 

The field from one dipole at the other: (the induced dipoles must be parallel)

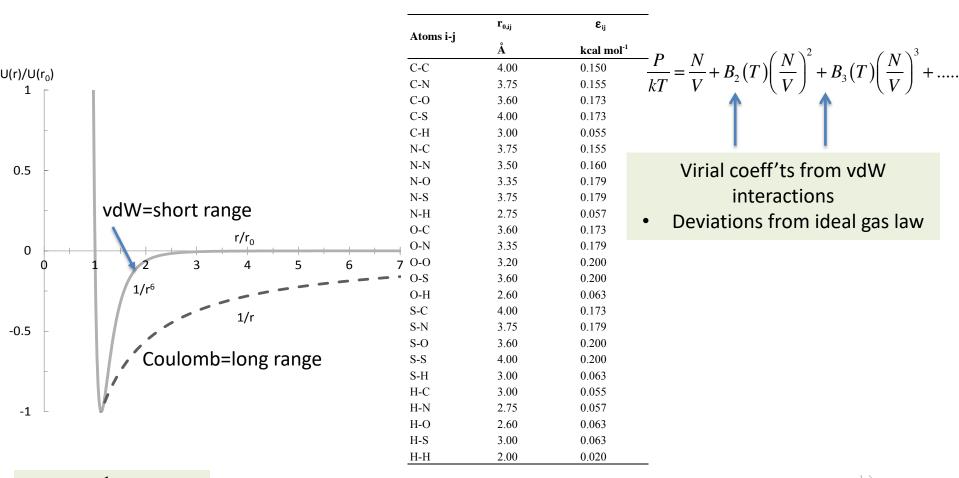
$$\mathbf{F}(\mathbf{r}) = \frac{3\hat{\mathbf{n}}(\mathbf{p} \cdot \hat{\mathbf{n}}) - \mathbf{p}}{4\pi\varepsilon_0 \varepsilon_r r^3} \Longrightarrow F(r) \approx \frac{p_1}{4\pi\varepsilon_0 \varepsilon_r r^3}$$

<u>Induced dipoles</u> depend on the polarizability ( $\alpha$ ) of the molecule (which may different from

the medium, 
$$\varepsilon_r$$
:

$$\mathbf{p}_{ind}(\mathbf{r}) = \alpha \mathbf{F}(\mathbf{r}) \Rightarrow p_2 \approx \frac{\alpha p_1}{4\pi \varepsilon_0 \varepsilon_r r^3}$$

From which we get the "London interaction energy":  $U_{vdW} \approx \frac{\alpha p_1^2}{(4\pi\epsilon_0 \epsilon)^2 r^6}$ 


$$U_{vdW} pprox rac{\alpha p_1^2}{\left(4\pi\varepsilon_0^2\varepsilon_r^2\right)^2 r^6}$$

$$U(r_{12}) = -\frac{A_{disp}}{r_{12}^6}$$
: Dispersion interaction

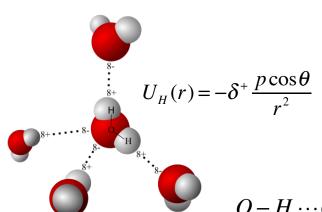
$$U(r) = 4\varepsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right]$$
: Lennard-Jones 6-12 potential

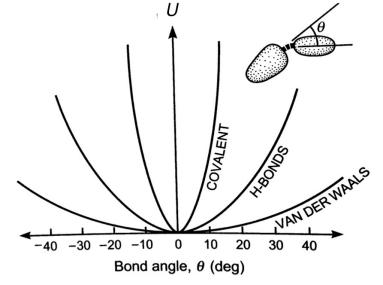


### van der Waals Coefficients Between atoms



$$U_{crystal} = \frac{1}{2} \sum_{i \neq j} U(R_{ij})$$


: Equilibrium crystal structure found by calculating and then minimizing all atom-atom potentials over N atoms in molecules in solid


- Local vs. global minima?
- Huge numbers of degrees of freedom (6 per molecule!)
- Thermodynamics important (different structures with different  $k_BT$ )



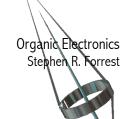
# Hydrogen bonds

- Directional
- Coulombic





Israelachvili, *Intermolecular and Surface Forces*, Academic Press, 2011


 $O-H\cdots O$ : Must be linear otherwise O-O repulsion dominates

O-H bond: 1Å

O...H bond: 1.6 -1.8 Å

H···O and H···N are usually only important

Precise form of potential (Coulombic, exponential) usually not critical

