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What organic electronics are good for

• Low cost

• Large area

• Flexible

• Conformable/Stretchable

• Light weight

• Optoelectronics
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This Chart Explains Why Organic 
Semiconductors are Unique
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Property Organics Inorganics

Bonding van der Waals Covalent/Ionic

Charge Transport Polaron Hopping Band Transport

Mobility ~1 cm2/V·s ~1000 cm2/V·s

Absorption 105-106 cm-1 104-105 cm-1

Excitons Frenkel Wannier-Mott

Binding Energy ~500-800 meV ~10-100 meV

Exciton Radius ~10 Å ~100 Å
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Organic Materials are Interesting 
Because… 

• They have properties that bridge between their individual molecular 

and collective (solid state) properties

• They provide deep insights into how the properties of molecules 

transform into band structure (via tight binding), conductivity and 

excitonic states

• Almost all physical properties result from electrostatic, van der Waals 

bonds (vs. chemical bonds) between molecules in the solid state

• Disorder governs characteristics in the solid state

• Their mechanical fragility leads to film growth and patterning that 

differ from more robust, inorganic semiconductors
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van der Waals bonding
• Purely electrostatic instantaneous induced dipole-induced dipole interaction 

between π-systems of nearby molecules.
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MOLECULAR PICTURE

GROUND STATE         FRENKEL EXCITON

S1

S0

SEMICONDUCTOR PICTURE

CONDUCTION
BAND

VALENCE
BAND

Wannier exciton
Inorganic semiconductors

Frenkel exciton
Organic materials

Dielectric constant ~15
binding energy ~10meV (unstable at RT)

radius ~100Å

Dielectric constant ~2
binding energy ~1eV (stable at RT)

radius ~10Å

treat excitons 
as chargeless

particles
capable of 
diffusion.

Transport of 
energy (not 

charge)

Charge Transfer (CT) 
Exciton

(bridge between W and F)

Organic Semiconductors are Excitonic Materials
Inorganics Organics
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Band Structure is Replaced by Energy Levels

Conventional
Semiconductor

Organic
Semiconductor

LUMO: Lowest unoccupied 
molecular orbital

HOMO: Highest occupied 
molecular orbital

It is essential to keep your terminology clear: Band gaps exist in inorganics, energy gaps 
without extended bands are the rule (but with important exceptions) in organics.7
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Triplet
S=1

ms=±1, 0

Singlet and triplet states

(b)$

S=1$
mS=1$

S$

(a)$

S=0$
mS=0$

ms=)½$

z$ms=½$

S=1$
mS=0$

S=0$
mS=)1$

Singlet
S=0

ms= 0

Spatially symm. Spin antisymm.

Pauli Exclusion Principle: Total wavefunctions must be antisymmetric

In phase180o out of phase
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n = 2
n = 1

n = 0

n = 2
n = 1

n = 0

DFC

DQ

𝑆! → 𝑆"

𝑆! ← 𝑆"

Understanding molecular spectra
Statistics of vibronic state filling:

 N nl( ) = N 0( )exp −nl!ω l / kBT( )
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manifold
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states
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Shift

Stokes, or 
Franck-Condon

Shift
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Jablonski Diagrams: 
Life Histories of Excitons
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Kasha’s rule
The radiative transition from
a given spin manifold occurs
from the lowest excited 
state.
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GROUND STATE
spin anti-symmetric

Singlet
spin anti-symmetric

Triplet
spin symmetric

Relaxation allowed
fast, efficient
ʻFluorescenceʼ

25% 75%

Phosphorescence enhanced by 
mixing S+T eg: spin-orbit 

coupling via heavy metal atom

100% Internal Efficiency via Spin-Orbit Coupling 
Heavy metal induced electrophosphorescence ~100% QE

Relaxation disallowed
slow, inefficient
ʻPhosphorescenceʼ

Relaxation allowed
not so slow, efficient
ʻPhosphorescenceʼ

- + +

Baldo, et al., Nature 395, 151 (1998)

100%

x

MOLECULAR EXCITED STATES
AFTER ELECTRICAL EXCITATION
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Contact'zone'
(Exchange:'Dexter)'

Near'field'zone'
(FRET:'Förster)'

Intermediate''
zone'

Far'field'zone'
(Radia?ve:'1/r)'

Energy Transfer

• If excitons are mobile in the solid, they must move from molecule to molecule
² The microscopic “hopping” between neighboring molecules = energy transfer

Different transfer ranges accessed by different processes
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Förster:
- resonant dipole-dipole coupling
- donor and acceptor transitions must be allowed

Acceptor
(dye )

Donor

up to ~ 100Å

Donor* Acceptor Donor Acceptor*

Electron Exchange (Dexter):
- diffusion of excitons from donor to acceptor 

by simultaneous charge exchange: short range

Acceptor
(dye)

Donor

~ 10ÅDonor* Acceptor Donor Acceptor*

spin is conserved: e.g. singlet-singlet or triplet-triplet

Energy Transfer from Host to Dopant: A Review
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Kasha’s rule
The radiative transition from
a given spin manifold occurs
from the lowest excited 
state.

Jablonski Diagrams
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Energy Gap Law
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• The larger the energy gap, the lower the probability for non-radiative recombination. 
⇒ As the energy gap of a molecular species decreases, radiative transitions 

have a higher probability for non-radiative decay. 

 
kif = Aexp −γ Eg / !ω p( )

γ = log
Eg

ΩEp

⎛

⎝⎜
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⎠⎟
−1

Ω= number of modes contributing to the 
maximum phonon energy,
= ½ the Stokes shift.
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Shi, S., et al.  2019. J. Am. Chem. Soc., 141(8), pp.3576-3588.



Organic Electronics
Stephen R. Forrest

16

Bad things happen to good excitons

Delayed fluorescence
Triplet fusion

S→ 2TSinglet fission when
ES ≥ 2ET
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Modes of Conduction
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(a)	 ECBM	

(b)	 (c)	

ELUMO	

EEA	
EIP	

EVAC	

(a)	 ECBM	

(b)	 (c)	

ELUMO	

EEA	
EIP	

EVAC	

Band transport

Hopping and tunneling transport

• Coherent
• Charge mean free path λ>>a
•

BW

  BW > kBT ,  !ω 0

Molecule

• Incoherent (each step independent of previous)
• Charge mean free path λ~a
• Tunneling between states of equal energy is band-like
•   BW < kBT ,  !ω 0

EB
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Transport Bands in Organics
• Tight binding approximation is useful due to importance of only nearest 

neighbor interactions

• Recall case of dimers and larger aggregates on exciton spectrum. Close 
proximity of neighbors results in:
• Coulomb repulsion
• Pauli exclusion
Ø Splitting leads to broadening of discrete energies into bands
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LUMO

HOMO

Donor
Acceptor

2 3 4

4

Photoinduced Charge-Transfer at a Type II HJ
The Basis of OPV Operation

1 2
3

1 Exciton generation by 
absorption of light (1/α)

4

Exciton diffusion over ~LD

Exciton dissociation by rapid 
and efficient charge transfer

Charge extraction by the internal 
electric field

Processes occuring at a Donor-Acceptor heterojunction

1 2 3 4

4

Typically: LD<<1/α
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Furnace

Pump

Position

Te
m

pe
ra

tu
re

Source 
condensation 
zone (impurities deposit on 
hotter and colder zones)

SleeveAmpoule

Permeable
stopper

Exhaust

Purification by Thermal Gradient Sublimation

• Reasonably fast and simple
• Material must be sublimable
• Multiple cycles result in higher purity
• Can occur in vacuum or under inert gas 

flow
• Small crystal growth on chamber walls 

possibleTetracene after sublimation Pyrene

Useful for obtaining very high purity small molecule materials
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Film Deposition
Vacuum Thermal Evaporation (VTE)

Substrate 
Mask 

Host 
Heater 

Dopant 

Thickness  
monitor 

Vacuum 

• Most common method to date
• Simple
• Precise
• Multilayer structures possible
• Small molecules, not polymers
• Wasteful of materials
• High vacuum: 10-7 torr
• Oil-free pumps
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