Week 1-15

Review

Organic Electronics Stephen R. Forrest

What organic electronics are good for

- Low cost
- Large area
- Flexible
- Conformable/Stretchable
- Light weight
- <u>Opto</u>electronics

This Chart Explains Why Organic Semiconductors are Unique

Property	Organics	Inorganics
Bonding	van der Waals	Covalent/Ionic
Charge Transport	Polaron Hopping	Band Transport
Mobility	~1 cm²/V⋅s	~1000 cm²/V·s
Absorption	10 ⁵ -10 ⁶ cm ⁻¹	10 ⁴ -10 ⁵ cm ⁻¹
Excitons	Frenkel	Wannier-Mott
Binding Energy	~500-800 meV	~10-100 meV
Exciton Radius	~10 Å	~100 Å

Organic Electronics Stephen R. Forrest

Organic Materials are Interesting Because...

- They have properties that bridge between their individual molecular and collective (solid state) properties
- They provide deep insights into how the properties of molecules transform into band structure (via tight binding), conductivity and excitonic states
- Almost all physical properties result from electrostatic, van der Waals bonds (vs. chemical bonds) between molecules in the solid state
- Disorder governs characteristics in the solid state
- Their mechanical fragility leads to film growth and patterning that filter from more robust, inorganic semiconductors

van der Waals bonding

• Purely electrostatic *instantaneous* induced dipole-induced dipole interaction between π -systems of nearby molecules.

Medium around the dipole is *polarized*

Organic Electronics Stephen R. Forrest

$$U(r_{12}) = -\frac{A_{disp}}{r_{12}^{6}} : \text{Dispersion interaction}$$
$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] : \text{Lennard-Jones 6}$$

Lennard-Jones 6-12 potential (includes core repulsion)

Organic Semiconductors are Excitonic Materials

Band Structure is Replaced by Energy Levels

It is <u>essential</u> to keep your terminology clear: **Band gaps** exist in inorganics, <u>energy gaps</u> without extended bands are the rule (but with important exceptions) in organics.

Singlet and triplet states

and

Pauli Exclusion Principle: Total wavefunctions must be antisymmetric

Understanding molecular spectra

Jablonski Diagrams: Life Histories of Excitons

Energy Transfer

If excitons are mobile in the solid, they must move from molecule to molecule
The microscopic "hopping" between neighboring molecules = energy transfer

Different transfer ranges accessed by different processes

Energy Transfer from Host to Dopant: A Review

Förster:

Electron Exchange (Dexter):

 diffusion of excitons from donor to acceptor by simultaneous charge exchange: <u>short range</u>

Jablonski Diagrams

Shi, S., et al. 2019. J. Am. Chem. Soc., 141(8), pp.3576-3588.

Bad things happen to good excitons

 $S+T \xrightarrow{k_{STA}} T^n + S_0 \xrightarrow{k_{Tn}} T + S_0$ (STA) $\begin{array}{c} k_{SPA} & k_{Pn} \\ S + P \xrightarrow{} P^{n} + S_{0} \xrightarrow{} P + S_{0} \end{array}$ (SPA) S_1/T_1 S_1/T_1 energy transfer $\begin{array}{c} k_{SSA} & k_{Sn} \\ S+S \xrightarrow{} S^n + S_n \xrightarrow{} S + S_n \end{array}$ (SSA) SSA, TTA, STA 0 Delayed fluorescence S_1/T_1 $T + T \xrightarrow{k_{TTA-S}} S^n + S_0 \xrightarrow{k_{Sn}} S + S_0 \quad \text{(TTA-S)}$ **Triplet fusion** energy transfer S $T + T \xrightarrow{k_{TTA-T}} T^n + S_0 \xrightarrow{k_{Tn}} T + S_0 \quad \text{(TTA-T)}$ SPA, TPA 2 $T + P \xrightarrow{k_{TPA}} P^n + S_0 \xrightarrow{k_{Pn}} P + S_0$ (TPA) Organic Electronics Stephen R. Forrest Singlet fission when $S \rightarrow 2T$ $E_{s} \geq 2E_{T}$ 16

Modes of Conduction

- Coherent
- Charge mean free path $\lambda >> a$
- $BW > k_B T$, $\hbar \omega_0$

Hopping and tunneling transport

- Incoherent (each step independent of previous)
- Charge mean free path $\lambda \sim a$
- Tunneling between states of equal energy is band-like

•
$$BW < k_B T$$
, $\hbar \omega_0$

Transport Bands in Organics

- **Tight binding** approximation is useful due to importance of only nearest neighbor interactions
- Recall case of dimers and larger aggregates on exciton spectrum. Close proximity of neighbors results in:
 - Coulomb repulsion
 - Pauli exclusion
 - Splitting leads to broadening of discrete energies into bands

Photoinduced Charge-Transfer at a Type II HJ

The Basis of OPV Operation

Processes occuring at a Donor-Acceptor heterojunction

Purification by Thermal Gradient Sublimation

Useful for obtaining very high purity small molecule materials

Tetracene after sublimation

Pyrene

- Reasonably fast and simple
- Material must be sublimable
- Multiple cycles result in higher purity
- Can occur in vacuum or under inert gate Electronics flow
 Stephen R. Forrest
- Small crystal growth on chamber walls possible

Film Deposition Vacuum Thermal Evaporation (VTE)

- Most common method to date
- Simple
- Precise
- Multilayer structures possible
- Small molecules, not polymers
- Wasteful of materials
- High vacuum: 10⁻⁷ torr
- Oil-free pumps

ganic Electronics Stephen R. Forrest