Week 1-13

Thin Film Deposition, Processing and Patterning

Deposition from vapor (continued) & solution Post-growth processing (annealing) Device patterning

Chapter 5.4.2.4 - 5.6 (except 5.6.4)

Crystal Platelets Grow on Cold Chamber Walls Via OVPD

- Same phenomenon as found in thermal gradient sublimation
- Sometimes called "plate sublimation"

rubrene

pyrene

de Boer et al. Phys. Stat. Sol. (a) 201 1302 (2004)

Karl, Organic Crystals, Springer (1980)

Single Crystal Platelets Exhibit Anisotropies Characteristic of Organics

Mobility depends on crystal direction

Sundar et al., Science 303, 1644 (2004).

Organic Electronics

Stephen R. Forrest

Solution Deposition: Common Methods

Large single crystal growth from solution

- Organic dissolved in solution
- Drawn into gap between two glass plates by capillary action
- Solution slowly evaporates leaving crystal slab between plates
- Nucleation along gold spacers used to bond plates results in single crystal growth
- If evaporation too fast, polycrystallites form

Anthracene single crystal in channel

Organic Electronics Stephen R. Forrest

Kéna-Cohen et al. Phys. Rev. Lett., 101, 116401 (2008)

Crystalline Growth from Solution

Four methods that result in supersaturation of the solute in the solvent, forcing crystallization

Less soluble in high volatility solvent 1

•

• Solvent 1 concentration increases in inner ampoule, resulting in supersaturation

• Solvent 1 & 2 interdiffuse until supersaturation

Less soluble in solvent 1

Langmuir-Blodgett Monolayer Film Deposition

- Float molecules functionalized with hydrophilic and phobic groups on opposite ends on H₂O
- Draw hydrophilic or phobic sample surface through the film to pick up molecules
- Squeeze film by bringing barriers in from edges of trough to "heal" the film hole
- Repeat for as many cycles as MLs needed

Different configurations of 3 MLs on substrate surface

ctronics

Electrostatic Monolayer Deposition

Decher, et al. SCIENCE VOL. 277, 29 AUGUST 1997, p 1233

Organic Electronics Stephen R. Forrest

Post deposition film processing

- Some as-deposited films not in ideal morphology for device performance
- Unless growth results in the lowest energy crystalline phase, the morphology is metastable
- Adding energy to the film can help it to relax into a lower energy state:
 - polycrystalline → crystalline
 - nanocrystalline → microcrystalline
 - amorphous→polycrystalline
- Adding energy = annealing

Mobility Increases with Order

Film Annealing Processes

Increase molecular mobility within the film by Adding heat Introducing small solvent molecules

Thermal annealing can be constrained with a capping layer

15 min anneal with Ag cap to hold top surface flat

atom-atom potential structure calculation

Organia Electronics

Stephen R. Forrest

Solvent vapor annealing gives molecules spatial mobility to crystallize

Verploegen et al., Adv. Func. Mater., 20, 3519 (2010)

Controlling Morphology Via Annealing

Zimmerman et al., ACS Nano, 7, 9268 (2013)

Understanding the Annealed Structure Selected Area Electron Diffraction (SAED)

- Micron-scale crystals of DPASQ.
- Mesh: 13.9 Å by 16.4 Å, α=90°.
- "Inverse quasi epitaxy": DPASQ crystallization seeded by C₆₀ interface.

Controlling Open-circuit Voltage via Interface Recombination

- Material choice determines:
 ▷ ΔE_{HL} (HOMO-LUMO Gap)
 ▷ Steric hindrance (MO overlap)
- Device processing/morphology can limit V_{oc} losses:
 - $> k_{PPd}$ (PP dissociation)
 - $> k_{PPr}$ (PP recombination)

*Giebink et al. PRB 2010

Solution Processing Phenomena

- To maximize V_{OC} in OPVs:
 - Disorder at HJ.
- To maximize *J_{SC}*:
 - Ordered bulk.
 - Finger-like BHJ structure.
- DPSQ maintains interface disorder on SVA Post-C₆₀.
- DPASQ undergoes "inverse quasi-epitaxy" and interdiffusion on SVA Post-C₆₀.
- Blending DPASQ and DPSQ eliminates tradeoff between V_{oc} and J_{sc} and maximizes η_P.

Device and Film Patterning

Primary purpose is to define the device area, suited to its function

• Requirements

- ≻Simple
- >Non-destructive of the materials forming the device
- Adaptable to large substrate areas
- Adaptable to flexible substrates
- Rapid (for large scale manufacturing)
- Methods
 - Shadow masking
 - Direct printing (Ink jet and OVJP)
 - > Photolithography
 - Stamping and nanopatterning
 LITI

Organic Electronics Stephen R. Forrest

Example: Pixel micro-patterning in OLED displays

Shadow mask patterning in the kinetic and diffusive film growth regimes

- Shadow mask patterning is the most common form of organic device electrode definition
- Used for producing OLED displays for small mobile and large TV applications

M. Shtein et al. J. Appl. Phys., 93, 4005, (2003)

Resolution limits for shadow-masking

Photolithography: Common Method for Patterning Inorganic Semiconductor Devices

Photolithographic processes employ solutions (polymer resists, developers, etc.) that can damage organic active layers

 \Rightarrow More adaptable to substrate (e.g. electrode, feature) definition

Use Photoresist to Create Surface Topography to Pattern Subsequently Deposited Organics

- Avoid exposure to wet chemistry in photolithography
- Resolution defined by photolith limits.
- The pattern left in the polymer provides a near-field "shadow mask" for the deposit

Inkjet Printing

- Organic semiconductors similar to inks used in printing
- Organics must be soluble
- Droplets injected into wells formed by polymer walls

- Film cross section depends on its rheological properties and relative energy with substrate surface
- "Coffee stain effect" encourages piling up of deposit near edges – can result in non-uniform device performance

Inkjet Droplet Formation in Real Time

- Droplet shape depends on viscosity and volume of the droplet
- Want to avoid separation of of secondary and primary tails
- Speed limited by fluid properties

van der Bos et al. Phys. Rev. Applied, 1 014004 (2014)

Laboratory Printer

Flow Dynamics That Govern OVJP Deposit Shape

- Nozzles "focus" molecular plus carrier gas flows toward the substrate
- Heavier molecules (Alq₃ in this example) take straigher trajectories and deposit nearly directly under nozzle
- Lighter carrier gas (N₂) exhausts laterally
- Flow rates are 100's of m/s creating a high dynamic pressure beneath the nozzle

Organic Electronics Stephen R. Forrest

Shtein et al., J. Appl. Phys. 93,4005 (2003)

Deposition Profiles Resolution Limits

- deposit width increases with nozzle-substrate distance: *g*
- width increases with flow rate, Q, for small g
- Shape of deposition profile accurately reproduced by Monte Carlo simulations
- 1.5 µm features possible

McGraw, et al. App. Phys. Lett. 98 013302 (2011)

Printed R–G Pixel Arrays

Red-Green devices printed at nozzle substrate distance: 20 µm

BAIq electron blocking /emissive layer

g (µm)	Green	Red
VTE	(0.27, 0.63)	(0.66, 0.32)
10	(0.27, 0.63)	(0.66,0.33)
100	(0.32, 0.61)	(0.66,0.33)

100 μ m subpixels printed on 500 μ m centers show no detectible color cross-talk between pixels

McGraw, et al. App. Phys. Lett. 98 013302 (2011)

Laser Induced Thermal Imaging (LITI)

- High power laser beam absorbed in the donor film preloaded with the organic to be transferred
- Donor film placed in contact with substrate
- Heat generated by laser volitalizes organic that transfers to the substrate in the desired pattern

- Donor film must be replaced after each printing
- Useful for sublimable materials (small molecules)
- Radiation damage must be controlled by appropriate absorbing layer

