Week 1-11

Electronic Properties 5 Organic Heterojunctions, cont'd Organic-Inorganic Heterojunctions

Chapter 4.7.2-4.8

A Test of the Ideal Diode Theory The role of order

ð

H

£

cs st

- DPSQ is spun cast from chloroform.
- Other layers deposited by thermal evaporation.
- Vary D-A interface order via solvent vapor annealing (SVA):
 - 10 min exposure to dichloromethane vapor to "anneal" squaraine component.

SVA Pre-C₆₀

J. D. Zimmerman, et al. Nano Lett. 12, 4366 (2012)

Devices with SVA Post-C₆₀

• SVA post-C₆₀

− J_{SC} ↑ 25%.

- No loss in V_{oc}
 - k_{PPr} unchanged.

Process	J _{SC} [mA	V _{OC}	FF	η_P
	cm⁻²]	[V]	[%]	[%]
As Cast	5.3±0.3	0.94	73	3.6±0.2
Pre-C ₆₀	5.6±0.3	0.86	70	3.4±0.2
Post-C ₆₀	7.0±0.4	0.96	71	4.8±0.3

J. D. Zimmerman, et al. Nano Lett. 12, 4366 (2012)

Achieving the Ideal Morphology

C ₆₀ DPSQ			
	As Cast	Pre C ₆₀	Post C ₆₀
Bulk DPSQ	Amorphous	Ordered	Mod. Order
Bulk C ₆₀	Weak order	Ordered	Weak Order
Interface	Disordered	Ordered	Disordered
Surface	Smooth	Rough	Smooth
k _{PPr}	Low	High	Low
V _{oc}	High	Low	High
J _{SC}	Low	Moderate	High

c Electronics nen R. Forrest

Morphology vs. V_{oc}

$$qV_{OC} = \Delta E_{HL} - nk_BT \ln\left[\frac{k_{PPr}}{k_{PPd}}\frac{k_{rec}N_LN_H}{J_X/\alpha_0}\right]$$
$$k_{rec} = \gamma = \frac{q}{\varepsilon}(\mu_e + \mu_h)$$

- Worst case scenario: perfectly ordered crystalline interface and bulk, Face-on.
 - High k_{PPr} and k_{rec}
- Better Scenario I: Perfectly crystalline and end-on orientation
- Even Better Scenario II: crystalline bulk, intermixed interface
 - Poor coupling between like-molecules (C₆₀-C₆₀ and SQ-SQ) reduces PP formation (k_{rec}) probability.

Stephen R. Forrest

 Overcomes enhanced k_{ppr} due to facial contact
Organic Electronics

Organic-Inorganic HJs

- The dynamics at organic HJs are based on exciton transport and recombination
- The dynamics of inorganic HJs are based on free charge transport and recombination
- Can we understand hybrid materials systems based on a combination of these two pictures?

Organic-Inorganic HJs: Motivation

- Organic surface passivation of III-V Schottky barrier PV
 - Increase PCE from 13% to 15% in p-InP SB-PV
- Charge transfer between an organic dye and inorganic semiconductor is a critical process in DSSCs
- Nanostructured inorganics for PVs and PDs
- Bridge the gap between inorganic/inorganic and organic/organic junction models, to describe the o/i junction.

Photocharge Generation at the OI-HJ

Two Archetype IO-HJs

Hybrid Charge Transfer Exciton

 $a_{_0}$ (nm) 6 --- 0.05 x0.2 ----- 1.0 kΤ 1000 Stable 100 E_B (meV) 10 Unstable 12 6 8 10 Effective dielectric constant

$$\langle a \rangle = a_I + a_0 = \frac{8\pi \langle \varepsilon_r \rangle \hbar^2}{m^* q^2},$$

$$\langle \varepsilon_r \rangle = (a_I \varepsilon_I + a_0 \varepsilon_0) / (a_I + a_0),$$

C. K. Renshaw, and S. R. Forrest, Phys. Rev. B, 90, 045302 (2014).

Organic Electronics Stephen R. Forrest

Electron density distribution

The Hybrid Charge Transfer Exciton Picture

Conservation Equations:

$$\frac{d\zeta}{dt} = \frac{J_x}{a_0} - k_r (\zeta - \zeta_{eq}) - k_d \zeta + k_{rec} n_I P_I = 0$$

$$\frac{dn_I(P_I)}{dt} = k_d \zeta - k_{rec} n_I P_I + \frac{J - J_p}{qa_0} = 0$$

<u>Hybrid Charge-Transfer (ζ) Current:</u>

$$J = qa_0k_{rec}(1-\eta)\left(n_IP_I - \frac{k_{PPd}}{k_{PPd,eq}}n_{I,eq}P_{I,eq}\right) - qJ_x\eta + J_p$$

- Current Limiting Mechanisms:
 - Recombination/Generation at interface
 - Injection/Diffusion across interface
- Simultaneous solution yields unique J(V_a)

nics

0)

HCTEs Can Be Free, or Trapped at Interface Defects

Two Part Device Model of the OI-HJ

- Solve Drift-Diffusion Eqn. in Organic
- Get (F, p, n, V_o) for given J and V_i
- Not a unique solution

- Current Limiting Mechanism:
 - Recombination/Generation at interface
 - Injection/Diffusion across interface
- Simultaneous solution yields unique J(V_a)
- nics rest

OI Diode Equations

Similar (in some important ways) to both I and O junctions

Without Traps:

$$J = qa_{O}k_{rec}N_{HOMO}N_{c}\exp\left(-\frac{\Delta E_{IG}}{k_{B}T}\right)\left(\exp\left(\frac{qV_{a}}{k_{B}T}\right) - 1\right) - qJ_{X} + J_{i}$$

With Traps in Organic Only:

$$J = qa_{O}\left[k_{rec,n}N_{C}H_{O}\exp\left(-\frac{\alpha_{O}}{k_{B}T}\right)\left(\exp\left(\frac{qV_{a}}{n_{O}k_{B}T}\right) - 1\right) + k_{rec,P}N_{HOMO}H_{i}\exp\left(-\frac{\alpha_{i}}{n_{i}k_{B}T}\right)\left(\exp\left(\frac{qV_{a}}{n_{i}k_{B}T}\right) - 1\right)\right] - qJ_{X} + J_{i}$$

$$n_o = \frac{l_o}{\delta_i(l_o - 1) + 1}, \quad \alpha_o = \frac{\Delta E_{IG}}{n_o} + \frac{l_o - 1}{l_o}(\delta_o \phi_o - \delta_i \phi_i)$$

Voltage is divided between sides of the junction

C. K. Renshaw, and S. R. Forrest, Phys. Rev. B, 90, 045302 (2014).

Direct Observation of Transport at an OI-HJ

Spectra from Two Different OI-HJ Diodes

Wide inorganic (TiO₂) band gap: Absorption and quantum efficiency due only to organic (DBP)

Moderate inorganic (InP) band gap: Absorption and quantum efficiency due only to organic (pentacene)

Note how loss due to absorption in organic converts to gain at low temperature \Rightarrow reduced loss of organic excitons before gain Examples at heterojunction

A. Panda, et al., Phys. Rev. B, 90, 045303 (2014)

Fit to OI-HJ Theory: DBP/TiO₂

Pentacene/InP

Ideal Diode Equations: Why they all look alike!

$$J = J_{S} \left(\exp\left(\frac{qV}{nk_{B}T}\right) - \chi \right) - J_{ph}$$

This expression comes from assumption of recombination at the junction

Equation	Js	J_{ph}	χ	n	
Inorganic (diffusion)	$q\left[\frac{D_p n_i^2}{L_p N_D} + \frac{D_n n_i^2}{L_n N_A}\right]$	J _I	1	1	
Inorganic ^(b) (generation, recombination)	$\frac{qn_i}{\tau_t} \left(\frac{k_B T}{q} \frac{2\varepsilon}{qWN_D} \right)$	Jı	$\frac{W}{\left(\frac{k_BT}{q}\frac{2\varepsilon}{qWN_D}\right)}$	2	
Organic	$q a_0 k_{rec} N_{HOMO} N_{LUMO} (1)$ $- \eta_{PPd}) \exp\left(-\frac{\Delta E_{HL}}{k_B T}\right)$	$\eta_{PPd}J_X$	k _{PPd} k _{PPd,eq}	$n_A = \frac{l_A}{\delta_D(l_A - 1) + 1}$	
Hybrid	$q\langle a\rangle k_{rec}N_{HOMO}N_{c}(1)$ $-\eta_{d}\exp\left(-\frac{\Delta E_{OI}}{k_{B}T}\right)$	$\eta_a J_o + J_I$	$\frac{k_d}{k_{d,eq}}$	$n_0 = \frac{l_0}{\delta_I(l_0 - 1) + 1}$	Organ Step

Electronic Transport in Organics -What we learned

- Origins of electronic band structure
- Concept of polarons (large and small)
- Charge transfer
- Conductivity, effective mass and mobility
- Effects of trapped charge: recombination
- Injection from contacts
- Heterojunctions: O-O and O-I

Organic & Inorganic Semiconductor Properties: A Reminder

Property	Organics	Inorganics	
Bonding	van der Waals	Covalent/Ionic	
Charge Transport	Polaron Hopping	Band Transport	
Mobility	<0.1 cm ² /V·s	~1000 cm²/V·s	
Absorption	10 ⁵ -10 ⁶ cm ⁻¹	10 ⁴ -10 ⁵ cm ⁻¹	
Excitons	Frenkel	Wannier-Mott	
Binding Energy	~500-800 meV	~10-100 meV	
Exciton Radius	~10 Å	~100 Å	

Organic Electronics Stephen R. Forrest