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Traps Play a Big Role at Metal-
Semiconductor Junctions
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Charge Injection from Contacts: Mechanisms
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The metal work function is not an accurate measure of cathode injection efficiency due to 
presence of interface dipole.

An interfacial dipole shifts the energy at 
the surface of the organic film

Intermediate states may reduce the 
overall hopping barrier
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induces the intermediate states
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Origins and Disorder in the Interface Dipole
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Assuming interfacial dipoles of
strength ~ 30D, and Gaussian
orientational disorder with variance 
σ = π  radians, we get:

Alternatively, disorder may be due to local variation 
in the magnitude of the dipoles

Alq3/Mg-Ag

Baldo, M. A. & Forrest, S. R. 2001. Phys. Rev. B, 64, 085201.
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Features of the Interface State Model

EF

EC

•Limiting step is hop from organic interface to 
organic bulk

•Transport can be explained using only intrinsic 
properties:  No need for extrinsic effects such as 
traps. 

•Broad distribution of interface states generates 
power-law transport
-similar to trapped charge limited transport 
(distribution of states below a conduction level)

exp[-E/kBTt]

Classical trap charge limited 
conduction

EF

interface states

bulk states

energy barrier
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Gaussian Disorder Revisited

•Injection current is sum of upward 
and downward hops.

•But only upward hops are 
temperature dependent (Miller-
Abrahams picture).
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Disorder increases temperature-independent resonant current
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Polaron binding energy ~ 0.2 eV

Transition between temperature dependent and independent regimes:

TEMPERATURE DEPENDENCE & DISORDER
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Fit using polaron model for interfacial hop:
includes temperature dependence of phonon distribution

Baldo, M. A. & Forrest, S. R. 2001. Phys. Rev. B, 64, 085201.

J=Vm
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Interface Charge Transport
Interfacial model accurately describes charge injection.
• Generates power law current-voltage characteristics.
• Approximately matches temperature and thickness dependencies.

Model also applicable to metal/polymer interfaces.

Best cathodes dope surface layers of organic material with low work function metal. 
• Low work function metals (Li, Mg) induce defects (via reaction), improving 

injection

Metal/organic dipoles are crucial to charge injection.

Modification of the injection barrier possible with understanding of interfacial dipoles
• Chemistry at interface
• Mechanisms underlying dipole formation
• Damage due to metal deposition
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Derivation of Shockley’s Ideal Diode Equation

• To understand organic junctions, we first must understand inorganic homojunctions

BUT

• Inorganic p-n junction diodes do not involve excitons, only free charges
• This derivation ignores the essential physics of organics.

• For p-n junctions, we solve the current equation (for electrons, low current limit):

9

“Just because you have an ideal diode equation does not mean you have an ideal diode”

JN = qµnnF + qDN
dn
dx

≈ 0

-xn xp

WDrift             Diffusion  
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Solution to the drift-diffusion equation

• Solve for F:

• In thermal equilibrium:

• Going back to the diffusion equation:
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F = − DN

µn

1
n
dn
dx

= − kBT
q
1
n
dn
dx

VJ = φbi −Va = − Fdx =
− xn

xp

∫
kBT
q
lnn

n(− xn )

n(xp )

⇒ n −xn( ) = n xp( )eq Va−φbi( )/kBT

	

nn0pp0 = ni
2eqφbi /kBT

but		np0pp0 = ni
2 		(law	of	mass	action)	&	Δn xp( ) = n xp( )− np0

⇒Δn xp( ) = np0 eqVa /kBT −1( ); 			Δp −xn( ) = pn0 e
qVa /kBT −1( )

	

DN
d 2Δpn
dx2

− Δpn
τ p

= 0⇒ d 2Δpn
dx2

= Δpn
Lp
2

with	solutions

Δpn x( ) = pn0 e
qVa /kBT −1( )e− x/Lp

BC: n(xp)=np0 at Va=0.

Assume near-equilibrium conditions

fbi = built in junction potential
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Ideal p-n junction diode equation
• The current density:
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JP x( ) = −qDP
dΔpn
dx

= qDP pn0
LP

eqVa /kBT −1( )e− x/Lp

but	continuity	says	that	J 0( ) = J x( ) = J.

⇒ 	JP =
qDP pn0
LP

eqVa /kBT −1( )
But	for	a	doping	density	of	ND 	donors,	law	of	mass	action	again	says:

NDpn0 = ni
2

leaving	us	with:

JP =
qDPni

2

NDLP
eqVa /kBT −1( ) = q ni

2

ND

DP

τ P
eqVa /kBT −1( )

Finally	adding	in	the	contribution	from	electron	minority	carriers:

J = q ni
2
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2

NA
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τ N

⎡

⎣
⎢

⎤

⎦
⎥ eqVa /kBT −1( )

Current determined by:
Minority carrier diffusion and lifetime (not excitons)
Doping concentrations
Built-in junction potential
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But is this relevant to organic 
homojunctions?

• The concept of recombination, and recombination statistics is relevant for all junction diodes
• But cannot ignore effects of 

Ø Broad density of states near frontier orbitals
Ø Tunneling

⇒ The exponential factor is unchanged, assuming there can be non-idealities such that:

𝐼 = 𝐼! 𝑒"#!/%&"' − 1

where the ideality factor, n, is > 1, and I0 is different from the minority carrier expressions 
in the Shockley equation.
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Tunneling across the junction

Al-i-p MTDATA
homojunction

𝑗 = 𝑗!𝑒𝑥𝑝 𝑞𝑉

In forward direction this looks alot like 
recombination, except the slope is not T-
dependent

Tripathia & Mohapatra Org. Electron., 13, 1680 (2012)

hole tunneling from filled 
p-states to empty states
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Heterojunctions: Organic-organic contacts
• A heterojunction is a contact between two dissimilar materials (typically 

semiconductors)

• HJs play a vital role in all photonic devices, and many electronic devices too.
• Some definitions:

14

• Anderson’s rule: ΔEc=|χ1-χ2| (doesn’t work so well for inorganics 
due to charge transfer; better for organics)

• ΔEv=ΔEg-ΔEc
• Band bending due to free charge: organics tend toward flat bands

(EA)(WF)

Anisotype HJ
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Isotype vs. Anisotype HJ
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LUMO

HOMO

Donor
Acceptor

2 3 4

4

Photoinduced Charge-Transfer at a Type II HJ
The Basis of OPV Operation

1 2
3

1 Exciton generation by 
absorption of light (1/α)

4

Exciton diffusion over ~LD

Exciton dissociation by rapid 
and efficient charge transfer

Charge extraction by the internal 
electric field

Processes occuring at a Donor-Acceptor heterojunction

1 2 3 4

4

Typically: LD<<1/α

16



Organic Electronics
Stephen R. Forrest

Ideal Diode Equation: Problem Statement
• The Shockley Equation (1949):

has been successfully applied (e.g. Xue and Forrest, 2004) to organic 
heterojunction cells.  But the physics is wrong!

• Why does it “work”?
• Is there a more appropriate relationship for organic (i.e. excitonic) HJs?

J = Jo(exp(qVa / kbT ) −1) −Jph
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Excitonic Heterojunctions: 
Controlled by energy transport, not charge transport

free carriers
(nI, pI )

� 

kPPrζ� 

kPPdζ
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krecnI pI en
er

gy
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kPPrζeq

� 

JX a0

� 

J qa0
excitons 

reaching to HJ

polaron 
pairs at HJ

ground

~ PP spatial extent

1. Excitons diffuse with current JX to HJ
2. Separate into polaron pair across HJ
3. PP can either dissociate into carriers
4. Or recombine to ground state

N. C. Giebink, et al. Phys. Rev. B, 82, 155305 
& 155306 (2010). 

ζ=PP density
kPPr=PP recombination rate
kPPd=PP dissociation rate
krec=charge recombination rate
J=electron current
WF=work function
nI, pI=charge at interface

A polaron pair at the interface 
is equivalent to a charge 
transfer (CT) state

18
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Derivation of the Ideal Diode Eq.
• The rate equations in steady state:

• Excitons:

• Polarons:

• With solutions:

• Now charge at interface is related to the charge at the contacts by the 
voltage division across the D and A layers:

• Last step: Relating the contact densities, and voltage division factors, 
δD,A to the densities of states following Fermi statistics, we arrive at a 
solution: 

19

donor HOMO and acceptor LUMO along with any shift due
to formation of an interface dipole. The hole and electron
injection barriers at the anode and cathode are !a and !c,
respectively, again including any interface dipoles, and the
built-in potential of the device is given by the corresponding
difference in contact work functions: Vbi=WFa−WFc.

Figure 1!b" shows the processes that occur within the HJ
volume. The recombination of polaron pairs is described via

JX

a0
− kPPr!" − "eq" − kPPd" + krecnIpI = 0, !1"

and for free carriers:

kPPd" − krecnIpI +
J

qa0
= 0, !2"

where steady-state conditions are assumed. Here, " is the PP
density, JX is the exciton current density diffusing to the
interface, J is the charge current density flowing through the
device, q is the electron charge, and nI and pI are the inter-
facial free electron and hole densities, respectively. Defini-
tions of important variables used in this section are summa-
rized in Table I.

Polaron pairs recombine to the ground state at rate kPPr,
which is also linked to the thermal equilibrium PP popula-
tion, "eq, determined by detailed balance.9 Polaron pairs dis-
sociate at rate kPPd, which is a function of temperature and
the electric field at the interface according to the Onsager-
Braun model10 !see Appendix". Finally, free carriers bimo-
lecularly recombine to form PPs with rate constant, krec, ap-
proximated by its bulk Langevin value, q#tot /$.11,12 Here,
#tot is the sum of the electron and hole mobilities in the
acceptor and donor layers, respectively, and $ is the average
permittivity.

Solving Eq. !1" for the PP density and substituting the
result into Eq. !2" gives

J = qa0krec# kPPr

kPPd + kPPr
$#nIpI −

kPPd

kPPd ,eq
nI,eqpI,eq$

− qJX# kPPd

kPPd + kPPr
$ , !3"

where we have used "eq=krecnI,eqpI,eq /kPPd ,eq from Eq. !2".
The subscript eq indicates the thermal equilibrium value in
the absence of bias or illumination. Similar to the Shockley
equation, we assume quasi-equilibrium. Hence, the carrier
densities at the interface !nI , pI" and contacts !nC , pC" are
related via7

nI = nC exp⌊%Aq!Va − Vbi"
kbT ⌋ !4a"

and

pI = pC exp⌊%Dq!Va − Vbi"
kbT ⌋ , !4b"

where %D+%A=1 are the fractions of the potential dropped
across the donor !D" and acceptor !A" layers, respectively.
Here, Va is the applied bias, kb is Boltzmann’s constant, and
T is the temperature. These relations are strictly valid only
when J=0, but are a good approximation at low current
when J is much smaller than either of its drift or diffusion
components.

Use of Eq. !4" in Eq. !3" yields

J = qa0krecnCpC!1 − &PPd"exp!− qVbi/kbT"

' %exp!qVa/kbT" −
kPPd

kPPd ,eq
&− q&PPdJX, !5"

where &PPd =kPPd / !kPPd +kPPr" is the PP dissociation
probability.10,13 Assuming detailed balance of the charge den-
sity adjacent to an injecting contact,14 we write

nC = f!Fc,T"NLUMO exp!− !c/kbT" , !6"

where NLUMO is the density of states !DOS" at the acceptor
LUMO and Fc is the electric field at the cathode contact. The
analogous relation involving the injection barrier, !a, 'see
Fig. 1!a"( exists for holes at the anode with NHOMO as the
DOS at the donor HOMO. The term, f!Fc ,T" is dominated
by Schottky barrier lowering; since it is near unity except for
the case of high field and/or low temperature, we neglect it

FIG. 1. !Color online" !a" Energy-level diagram showing the
anode and cathode work functions, WFa and WFc, and their asso-
ciated injection barriers !a and !c, respectively. The interfacial gap,
(EHL, is the energy difference between the highest occupied mo-
lecular orbital energy of the donor and the lowest unoccupied mo-
lecular orbital energy of the acceptor. Current is unipolar in the
donor !Jp" and acceptor !Jn" layers and is determined from
generation/recombination in the HJ region, roughly defined by the
spatial extent, a0, of the polaron pair distribution at the interface. !b"
Processes occurring within the HJ region. Excitons diffuse, with
current density, JX, to the HJ and undergo charge transfer to form
polaron pairs. These may recombine, at rate kPPr, or dissociate with
rate, kPPd, as determined by the Onsager-Braun model !Ref. 10".
The current density, J, contributes to the interfacial free electron
!nI" and hole !pI" densities, which bimolecularly recombine to form
polaron pairs at rate krec.

GIEBINK et al. PHYSICAL REVIEW B 82, 155305 !2010"
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the electric field at the interface according to the Onsager-
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proximated by its bulk Langevin value, q#tot /$.11,12 Here,
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acceptor and donor layers, respectively, and $ is the average
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where we have used "eq=krecnI,eqpI,eq /kPPd ,eq from Eq. !2".
The subscript eq indicates the thermal equilibrium value in
the absence of bias or illumination. Similar to the Shockley
equation, we assume quasi-equilibrium. Hence, the carrier
densities at the interface !nI , pI" and contacts !nC , pC" are
related via7

nI = nC exp⌊%Aq!Va − Vbi"
kbT ⌋ !4a"

and

pI = pC exp⌊%Dq!Va − Vbi"
kbT ⌋ , !4b"

where %D+%A=1 are the fractions of the potential dropped
across the donor !D" and acceptor !A" layers, respectively.
Here, Va is the applied bias, kb is Boltzmann’s constant, and
T is the temperature. These relations are strictly valid only
when J=0, but are a good approximation at low current
when J is much smaller than either of its drift or diffusion
components.
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sity adjacent to an injecting contact,14 we write

nC = f!Fc,T"NLUMO exp!− !c/kbT" , !6"

where NLUMO is the density of states !DOS" at the acceptor
LUMO and Fc is the electric field at the cathode contact. The
analogous relation involving the injection barrier, !a, 'see
Fig. 1!a"( exists for holes at the anode with NHOMO as the
DOS at the donor HOMO. The term, f!Fc ,T" is dominated
by Schottky barrier lowering; since it is near unity except for
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anode and cathode work functions, WFa and WFc, and their asso-
ciated injection barriers !a and !c, respectively. The interfacial gap,
(EHL, is the energy difference between the highest occupied mo-
lecular orbital energy of the donor and the lowest unoccupied mo-
lecular orbital energy of the acceptor. Current is unipolar in the
donor !Jp" and acceptor !Jn" layers and is determined from
generation/recombination in the HJ region, roughly defined by the
spatial extent, a0, of the polaron pair distribution at the interface. !b"
Processes occurring within the HJ region. Excitons diffuse, with
current density, JX, to the HJ and undergo charge transfer to form
polaron pairs. These may recombine, at rate kPPr, or dissociate with
rate, kPPd, as determined by the Onsager-Braun model !Ref. 10".
The current density, J, contributes to the interfacial free electron
!nI" and hole !pI" densities, which bimolecularly recombine to form
polaron pairs at rate krec.
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respectively, again including any interface dipoles, and the
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where steady-state conditions are assumed. Here, " is the PP
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rized in Table I.
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sity adjacent to an injecting contact,14 we write
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FIG. 1. !Color online" !a" Energy-level diagram showing the
anode and cathode work functions, WFa and WFc, and their asso-
ciated injection barriers !a and !c, respectively. The interfacial gap,
(EHL, is the energy difference between the highest occupied mo-
lecular orbital energy of the donor and the lowest unoccupied mo-
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spatial extent, a0, of the polaron pair distribution at the interface. !b"
Processes occurring within the HJ region. Excitons diffuse, with
current density, JX, to the HJ and undergo charge transfer to form
polaron pairs. These may recombine, at rate kPPr, or dissociate with
rate, kPPd, as determined by the Onsager-Braun model !Ref. 10".
The current density, J, contributes to the interfacial free electron
!nI" and hole !pI" densities, which bimolecularly recombine to form
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donor HOMO and acceptor LUMO along with any shift due
to formation of an interface dipole. The hole and electron
injection barriers at the anode and cathode are !a and !c,
respectively, again including any interface dipoles, and the
built-in potential of the device is given by the corresponding
difference in contact work functions: Vbi=WFa−WFc.

Figure 1!b" shows the processes that occur within the HJ
volume. The recombination of polaron pairs is described via

JX

a0
− kPPr!" − "eq" − kPPd" + krecnIpI = 0, !1"

and for free carriers:

kPPd" − krecnIpI +
J

qa0
= 0, !2"

where steady-state conditions are assumed. Here, " is the PP
density, JX is the exciton current density diffusing to the
interface, J is the charge current density flowing through the
device, q is the electron charge, and nI and pI are the inter-
facial free electron and hole densities, respectively. Defini-
tions of important variables used in this section are summa-
rized in Table I.

Polaron pairs recombine to the ground state at rate kPPr,
which is also linked to the thermal equilibrium PP popula-
tion, "eq, determined by detailed balance.9 Polaron pairs dis-
sociate at rate kPPd, which is a function of temperature and
the electric field at the interface according to the Onsager-
Braun model10 !see Appendix". Finally, free carriers bimo-
lecularly recombine to form PPs with rate constant, krec, ap-
proximated by its bulk Langevin value, q#tot /$.11,12 Here,
#tot is the sum of the electron and hole mobilities in the
acceptor and donor layers, respectively, and $ is the average
permittivity.

Solving Eq. !1" for the PP density and substituting the
result into Eq. !2" gives

J = qa0krec# kPPr

kPPd + kPPr
$#nIpI −

kPPd

kPPd ,eq
nI,eqpI,eq$

− qJX# kPPd

kPPd + kPPr
$ , !3"

where we have used "eq=krecnI,eqpI,eq /kPPd ,eq from Eq. !2".
The subscript eq indicates the thermal equilibrium value in
the absence of bias or illumination. Similar to the Shockley
equation, we assume quasi-equilibrium. Hence, the carrier
densities at the interface !nI , pI" and contacts !nC , pC" are
related via7

nI = nC exp⌊%Aq!Va − Vbi"
kbT ⌋ !4a"

and

pI = pC exp⌊%Dq!Va − Vbi"
kbT ⌋ , !4b"

where %D+%A=1 are the fractions of the potential dropped
across the donor !D" and acceptor !A" layers, respectively.
Here, Va is the applied bias, kb is Boltzmann’s constant, and
T is the temperature. These relations are strictly valid only
when J=0, but are a good approximation at low current
when J is much smaller than either of its drift or diffusion
components.

Use of Eq. !4" in Eq. !3" yields

J = qa0krecnCpC!1 − &PPd"exp!− qVbi/kbT"

' %exp!qVa/kbT" −
kPPd

kPPd ,eq
&− q&PPdJX, !5"

where &PPd =kPPd / !kPPd +kPPr" is the PP dissociation
probability.10,13 Assuming detailed balance of the charge den-
sity adjacent to an injecting contact,14 we write

nC = f!Fc,T"NLUMO exp!− !c/kbT" , !6"

where NLUMO is the density of states !DOS" at the acceptor
LUMO and Fc is the electric field at the cathode contact. The
analogous relation involving the injection barrier, !a, 'see
Fig. 1!a"( exists for holes at the anode with NHOMO as the
DOS at the donor HOMO. The term, f!Fc ,T" is dominated
by Schottky barrier lowering; since it is near unity except for
the case of high field and/or low temperature, we neglect it

FIG. 1. !Color online" !a" Energy-level diagram showing the
anode and cathode work functions, WFa and WFc, and their asso-
ciated injection barriers !a and !c, respectively. The interfacial gap,
(EHL, is the energy difference between the highest occupied mo-
lecular orbital energy of the donor and the lowest unoccupied mo-
lecular orbital energy of the acceptor. Current is unipolar in the
donor !Jp" and acceptor !Jn" layers and is determined from
generation/recombination in the HJ region, roughly defined by the
spatial extent, a0, of the polaron pair distribution at the interface. !b"
Processes occurring within the HJ region. Excitons diffuse, with
current density, JX, to the HJ and undergo charge transfer to form
polaron pairs. These may recombine, at rate kPPr, or dissociate with
rate, kPPd, as determined by the Onsager-Braun model !Ref. 10".
The current density, J, contributes to the interfacial free electron
!nI" and hole !pI" densities, which bimolecularly recombine to form
polaron pairs at rate krec.
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The subscript eq indicates the thermal equilibrium value in
the absence of bias or illumination. Similar to the Shockley
equation, we assume quasi-equilibrium. Hence, the carrier
densities at the interface !nI , pI" and contacts !nC , pC" are
related via7

nI = nC exp⌊%Aq!Va − Vbi"
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and
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where %D+%A=1 are the fractions of the potential dropped
across the donor !D" and acceptor !A" layers, respectively.
Here, Va is the applied bias, kb is Boltzmann’s constant, and
T is the temperature. These relations are strictly valid only
when J=0, but are a good approximation at low current
when J is much smaller than either of its drift or diffusion
components.
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probability.10,13 Assuming detailed balance of the charge den-
sity adjacent to an injecting contact,14 we write

nC = f!Fc,T"NLUMO exp!− !c/kbT" , !6"

where NLUMO is the density of states !DOS" at the acceptor
LUMO and Fc is the electric field at the cathode contact. The
analogous relation involving the injection barrier, !a, 'see
Fig. 1!a"( exists for holes at the anode with NHOMO as the
DOS at the donor HOMO. The term, f!Fc ,T" is dominated
by Schottky barrier lowering; since it is near unity except for
the case of high field and/or low temperature, we neglect it

FIG. 1. !Color online" !a" Energy-level diagram showing the
anode and cathode work functions, WFa and WFc, and their asso-
ciated injection barriers !a and !c, respectively. The interfacial gap,
(EHL, is the energy difference between the highest occupied mo-
lecular orbital energy of the donor and the lowest unoccupied mo-
lecular orbital energy of the acceptor. Current is unipolar in the
donor !Jp" and acceptor !Jn" layers and is determined from
generation/recombination in the HJ region, roughly defined by the
spatial extent, a0, of the polaron pair distribution at the interface. !b"
Processes occurring within the HJ region. Excitons diffuse, with
current density, JX, to the HJ and undergo charge transfer to form
polaron pairs. These may recombine, at rate kPPr, or dissociate with
rate, kPPd, as determined by the Onsager-Braun model !Ref. 10".
The current density, J, contributes to the interfacial free electron
!nI" and hole !pI" densities, which bimolecularly recombine to form
polaron pairs at rate krec.
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donor HOMO and acceptor LUMO along with any shift due
to formation of an interface dipole. The hole and electron
injection barriers at the anode and cathode are !a and !c,
respectively, again including any interface dipoles, and the
built-in potential of the device is given by the corresponding
difference in contact work functions: Vbi=WFa−WFc.

Figure 1!b" shows the processes that occur within the HJ
volume. The recombination of polaron pairs is described via
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− kPPr!" − "eq" − kPPd" + krecnIpI = 0, !1"

and for free carriers:

kPPd" − krecnIpI +
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where steady-state conditions are assumed. Here, " is the PP
density, JX is the exciton current density diffusing to the
interface, J is the charge current density flowing through the
device, q is the electron charge, and nI and pI are the inter-
facial free electron and hole densities, respectively. Defini-
tions of important variables used in this section are summa-
rized in Table I.
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which is also linked to the thermal equilibrium PP popula-
tion, "eq, determined by detailed balance.9 Polaron pairs dis-
sociate at rate kPPd, which is a function of temperature and
the electric field at the interface according to the Onsager-
Braun model10 !see Appendix". Finally, free carriers bimo-
lecularly recombine to form PPs with rate constant, krec, ap-
proximated by its bulk Langevin value, q#tot /$.11,12 Here,
#tot is the sum of the electron and hole mobilities in the
acceptor and donor layers, respectively, and $ is the average
permittivity.

Solving Eq. !1" for the PP density and substituting the
result into Eq. !2" gives
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$ , !3"

where we have used "eq=krecnI,eqpI,eq /kPPd ,eq from Eq. !2".
The subscript eq indicates the thermal equilibrium value in
the absence of bias or illumination. Similar to the Shockley
equation, we assume quasi-equilibrium. Hence, the carrier
densities at the interface !nI , pI" and contacts !nC , pC" are
related via7

nI = nC exp⌊%Aq!Va − Vbi"
kbT ⌋ !4a"

and

pI = pC exp⌊%Dq!Va − Vbi"
kbT ⌋ , !4b"

where %D+%A=1 are the fractions of the potential dropped
across the donor !D" and acceptor !A" layers, respectively.
Here, Va is the applied bias, kb is Boltzmann’s constant, and
T is the temperature. These relations are strictly valid only
when J=0, but are a good approximation at low current
when J is much smaller than either of its drift or diffusion
components.

Use of Eq. !4" in Eq. !3" yields

J = qa0krecnCpC!1 − &PPd"exp!− qVbi/kbT"

' %exp!qVa/kbT" −
kPPd

kPPd ,eq
&− q&PPdJX, !5"

where &PPd =kPPd / !kPPd +kPPr" is the PP dissociation
probability.10,13 Assuming detailed balance of the charge den-
sity adjacent to an injecting contact,14 we write

nC = f!Fc,T"NLUMO exp!− !c/kbT" , !6"

where NLUMO is the density of states !DOS" at the acceptor
LUMO and Fc is the electric field at the cathode contact. The
analogous relation involving the injection barrier, !a, 'see
Fig. 1!a"( exists for holes at the anode with NHOMO as the
DOS at the donor HOMO. The term, f!Fc ,T" is dominated
by Schottky barrier lowering; since it is near unity except for
the case of high field and/or low temperature, we neglect it

FIG. 1. !Color online" !a" Energy-level diagram showing the
anode and cathode work functions, WFa and WFc, and their asso-
ciated injection barriers !a and !c, respectively. The interfacial gap,
(EHL, is the energy difference between the highest occupied mo-
lecular orbital energy of the donor and the lowest unoccupied mo-
lecular orbital energy of the acceptor. Current is unipolar in the
donor !Jp" and acceptor !Jn" layers and is determined from
generation/recombination in the HJ region, roughly defined by the
spatial extent, a0, of the polaron pair distribution at the interface. !b"
Processes occurring within the HJ region. Excitons diffuse, with
current density, JX, to the HJ and undergo charge transfer to form
polaron pairs. These may recombine, at rate kPPr, or dissociate with
rate, kPPd, as determined by the Onsager-Braun model !Ref. 10".
The current density, J, contributes to the interfacial free electron
!nI" and hole !pI" densities, which bimolecularly recombine to form
polaron pairs at rate krec.

GIEBINK et al. PHYSICAL REVIEW B 82, 155305 !2010"

155305-2

δA+δD=1



Organic Electronics
Stephen R. Forrest

The Ideal Diode Equation: Excitonic HJs

Reverse Bias:

Rate Equations + Fermi Stats:

� 

J = qa0krecNHOMONLUMO 1−ηPPd( )exp −ΔEHL kbT( ) exp qVa kbT( ) − kPPd
kPPd ,eq

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
− qηPPd JX

PP dissociation 
efficiency

electron & hole 
DOS

• strong dissociation: 

� 

ηPPd > 0

� 

ηPPd =
kPPd

kPPr + kPPd

equilibrium dissociation 
rate:

à dark & zero bias

� 

kPPd > kPPd ,eq à saturation current increases à

Forward Bias:

• weak dissociation: 

� 

kPPd < kPPd ,eq à exponential diode current   à

Illumination:

• photogenerated PPs:        ,

� 

JX à photocurrent addition    à

N. C. Giebink, et al. Phys. Rev. B, 82, 155305 & 155306 (2010). 
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J0 exp(qVa / kBT )−

kPPd

kPPd ,eq

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− J ph
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Exciton Dissociation in an Electric Field: 
Onsager-Braun Theory

• The lowest CT state (CT1) is the precursor to charge generation:

• Onsager developed theory of dissociation of an ion pair in 1934, 
extended to CT states by Braun:

	
CT1

kPPd F( )
krec

⎯ →⎯⎯← ⎯⎯⎯ D+ + A− 		(equivalent	to	pI
+ + nI

− )

DA (ground state)

kPPr

	

kPPd F( ) = ν0 exp −ΔE / kBT( )J1 2 2 −b( )1/2⎡⎣ ⎤⎦ / 2 −b( )1/2

where:

J1 = Bessel	function	of	1st	order;	b = q
3F / 8πε rε0kB

2T 2( )
ΔE = CT	state	binding	energy	 = q2 / 4πε rε0rCT

+ -

F

Probability for CT state
ionization

r(nm)=

Braun, C. L. 1984. J. Chem. Phys., 80, 4157.
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Onsager-Braun Exciton Polarization
• Why there is a voltage dependence to kppd that gives j-V slope under 

reverse bias

Probability for exciton ionization

nm
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Including  traps

23

where lA=Tt,A/T ⇒

Trap Distribution Function

• Broad density of states (DOS)⇒continuous trap distribution:
Disordered materials:

E

ELUMO

DOS

exp. approx

• Ideality factors: nD, nA depend on shape of trap DOS
- e.g. n=2 for uniform distribution between HOMO and LUMO
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Dark Current With Traps

• General form including series resistance:

10-19
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J = JsD exp

q Va − JRs( )
nDkbT

⎛

⎝
⎜

⎞

⎠
⎟ −

kPPd

kPPd ,eq

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ JsA exp

q Va − JRs( )
nAkbT

⎛

⎝
⎜

⎞

⎠
⎟ −

kPPd

kPPd ,eq

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− qηPPd J X

24N. C. Giebink, et al. Phys. Rev. B, 82, 155305 & 155306 (2010). 
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J-V Fits to Diode Eq. with Traps
Org. HJ with Traps Shockley Eq.
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Acceptor
C60

N. C. Giebink, et al. Phys. Rev. B, 82, 155305 & 155306 (2010). 
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Do CT States Mediate The Current?
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Al
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nITO

-

+

Donor: DBP

Acceptor: C70

• CT states can be directly observed by electroluminescence following current injection
(use the junction in the OLED mode)

• The spectra give the CT energy, the intensity gives the oscillator strength

An archetype D-A junction -- DBP:C70
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Many organic configurations lead to CT states
Here are a few between multimers of C70 and DBP

Energy level results from DFT calculations

monomers dimers trimers tetramers

Liu et al. ACS Nano, 10, 7619 (2016)
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29Liu et al. ACS Nano, 10, 7619 (2016)

Electroluminescence Shows 2 CT states

• External efficiency of a donor-acceptor 
OPV cell

• Shaded area: direct CT excitation
⇒Photocurrent due to relaxed CT state

• Different blends under 3 V bias
• Energy of CT2 depends on C70 fraction in 

blend with DBP
⇒ Energy confinement in           

nanocrystallites
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Dependence of Voc on HJ Energies for Many 
Different D-A Combinations

VOC correlates with D-A energy gap!
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B.P. Rand, et al., Phys. Rev. B, 75, 115327 (2007). 
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A single rule fits all materials

Similar behavior found for polymer D-A junctions
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What the theory tells us-I

  
qVoc = ΔEHL − EB( )− kbT ln

kcr N HOMO N LUMO

ζmax J X a0

⎡

⎣
⎢

⎤

⎦
⎥

• At maximum sustainable power Jx~aoNHOMOkcr
- More excitons cannot be supported.

Also:

Thus:

 ζmax  NHOMO  NLUMO

 qVoc = ΔEHL − EB
as observed! 
(EB=polaron energy)

• Slope under reverse bias due to PP recombination – eliminates Rp

Open Circuit Voltage
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kPPd,eq/kPPr = 0.01

What the theory tells us-II

• PP recombination ⇒Reverse Slope
• Best morphologies limit kPPr at interface:

ØSteric hindrance
ØDisorder at interfaces/order in the bulk

Morphology
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