Organic Electronics: Foundations to Applications

This course is divided into two semesters with the following objectives:

- Semester 1-Foundations topics: Crystal structure and binding, Optical and electronic properties of organics, and materials growth and patterning. This semester covers material in Chapters 1-5.
- Semester 2-Applications topics: Light emitters, light detectors, transistors (including phototransistors), and selected other topics. This semester covers material in Chapters 1-9.

Week 1-1

Introduction to Organic Electronics

Chapter 1.1 – 1.3

Objectives of Week 1

- To introduce the basic promise and characteristics of organic materials and their electronic applications
 - What makes them different?
 - What makes them worth our time?
- To introduce the landmark advances in the field

Organic Materials: Definitions

- Formally, a material containing one C-H bond known as an organic material
 - C₆₀, C₇₀, graphene, etc. by this definition are not organics
 - More frequently described as C-rich compounds
 - Can contain metals, any other element
- Extreme variety due to facile chemistry
 - Several million compounds synthesized
 - First synthetic molecule: urea (Wöhler, 1828)

$$NH_4^+OCN^- \xrightarrow{heat} H_2N - C - NH_2$$

Organic & Inorganic Semiconductors: What makes them different?

Property	Organics	Inorganics		
Bonding	van der Waals	Covalent/Ionic		
Charge Transport	Polaron Hopping	Band Transport		
Mobility	~1 cm²/V⋅s	~1000 cm²/V·s		
Absorption	10 ⁵ -10 ⁶ cm ⁻¹	10 ⁴ -10 ⁵ cm ⁻¹		
Excitons	Frenkel	Wannier-Mott		
Binding Energy	~500-800 meV	~10-100 meV		
Exciton Radius	~10 Å	~100 Å		

Organic Electronics Stephen R. Forrest

Organic Semiconductors are Excitonic Materials

Band Structure is Replaced by Energy Levels

It is <u>essential</u> to keep your terminology clear: Band gaps exist in inorganics, <u>energy gaps</u> without extended bands are the rule (but with important exceptions) in organics. ⁹

Electronic Materials: A Comparison

	Inorganics	Organics	
Large area		+++	
Cost		++	
Green processing		+	
Easy to pattern	+	0	
Complexity	+	0	
Tunable properties	0	++	
Optical absorption	-/+	++	
Optical emission	-/++	++	
Low resistance	+		
High reliability	++	-	

Organic Electronics Stephen R. Forrest

Organic Materials are Interesting for Electronics Because...

- They are *potentially* inexpensive
- Their properties can be "easily" modified through chemical synthesis
- They can be deposited on large area, flexible and/or conformable substrates
- They can be very lightweight
- They have excellent optical properties
- They can be manufactured "by the kilometer"

But remember.....

If you are competing with silicon, go home. You've already los

A Brief History of Organic Electronics

Author	Contribution	Date	<u>F</u> und./ <u>T</u> ech.
Forster	Radiationless energy transfer	1948	F
Inokuchi	Organic semiconductors	1950	F
Dexter	Exchange energy transfer	1953	F
Marcus	Theory of electron transfer	1956	F
Holstein	Polaron theory	1959	F
Helfrich, Schneider	Organic electroluminescence	1965	F
Heeger, MacDiarmid, Shirakawa	High conductivity doped polymers	1977	F
Forrest, Kaplan, Schmidt	Organic/inorganic HJ, PTCDA	1982	F
Warta, Shtele, Karl	Mobility of ultrapurified organics	1985	F
Tang, vanSlyke	Organic solar cell	1986	Т
Tang	Bilayer OLED	1987	Т
Koezuka, Tsumura, Ando	Polymer TFT	1987	Т
Tang, vanSlyke, Chen	Doped OLED	1989	т
Bradley, Holmes, Friend	Polymer OLED	1990	Т
Heeger, PCBM	Bulk HJ, PCBM acceptor	1995	Т
Baldo, Thompson, Forrest	Electrophosphorescence	1998	Т
Peumans, Forrest	C ₆₀ acceptor	2001	Т
Samsung	i7500 Galaxy phone with AMOLED display	2009	T m
Giebink, Forrest	Diode theory of organic junctions	2010	F
LG	55" OLED TV	2012	Т

13

for similar data on polymers (polypyrroles) $\sigma = \sigma_0 \exp(-\Delta \epsilon/2kT)$.

14

Organic Electroluminescence

W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 14 229 (1965)

High Conductivity in Doped Polymers

Heeger, Shirakawa, MacDiarmid, et al. Phys. Rev. Lett., 39 1098 (1977)

Extrinsic Semiconductor (Extrinsic carrier concentration)

Electron density as a function of temperature

Organic/Inorganic Heterojunctions; PTCDA

S. R. Forrest, M. L. Kaplan, P. H. Schmidt, et al., E. 1982. Appl. Phys. Lett., 41, 90.

High Mobility in Ultrapure Organics

W. Warta, R. Stehle & N.Karl, 1985. Appl. Phys. A, 36, 163.

Thin Film Organic Solar Cells

Single Heterojunction Solar Cell

C.W. Tang, Appl. Phys. Lett., 48, 183 (1986).

Organic Thin Film Transistors

A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett., (1986) 1210,49

Luminescence of dye improves if dispersed in host material

C. W. Tang, S. A. Van Slyke, C. H. Chen, C. H. 1989. J. Appl. Phys., 65, 3610.

- 1. Charges trapped on dye molecules
- 2. Energy transferred from host
- 3. Effect used to increase color range and efficiency of OLEDs
- 4. Separates functions of conduction and luminescence

Polymer OLED

Burroughs, Bradley, Friend et al., Nature (1990) 347 539

Photogeneration in organics

Processes occurring at a Donor-Acceptor Heterojunction

2

Exciton diffusion over $\sim L_D$

Exciton dissociation by rapid and efficient charge transfer

Charge extraction by the internal electric field

Organic Electronics Stephen R. Forrest

Typically: $L_D << 1/\alpha$

Bulk Heterojunctions Increase OPV Efficiency Function follows (nano)structure

G. Yu, et al., 1995. *Science*, 270, 1789. Halls, J. J. M. et al., (1995) Nature, 376, 498.

PHOLEDs Cover the CIE and Super CIE Gamuts

AMOLED Displays: Driving the Technology

ectronics

orrest

2010: Galaxy Phones Phosphorescent R,G >2 Billion sold ?!

2012: LG 55" & Samsung Phosphorescent TV, \$1500 2017: iPhone X

2014-15: 65" and 77" OLED TVs 2016: 4K OLED TV

The Future is Flexible

Organic Electronics Stephen R. Forrest

Virtual and Augmented Reality Enabled by OLEDs

Requirements

Fast Bright Ultrahigh resolution

White Lighting is Rapidly Becoming a Reality

Efficiency Paced by New Materials

Transistors have come a long way

"Imperceptible" Electronics

Substrate foil (PEN)

Kaltenbrunner, et al., *Nature*, **499**, 458 (2013).

Substrates are $1 \mu m$ thick!

Plastics: A Brief History

- *Plastic* (noun): an organic polymeric solid that often is lightweight, pliable, moldable
- *Plastic* (adj.): Pliable and easily shaped. Can undergo a permanent change in shape when strained beyond a certain point
- History
 - Natural plastics have been around, well, forever
 - ✓ Rubber
 - ✓ Cellulose (plants)
 - ✓ Collagen (cartilage, ligaments...)
 - $\circ~$ First man-made plastics based on cellulose
 - ✓ Parkesine (Alexander Parkes, Birmingham UK, 1856, cellulosic)
 - ✓ John Wesley Hyatt, 1869 (1st synthetic plastic, substitute for ivory)
 - First fully synthetic plastic: Bakelite (Leo Baekeland, 1907)
 - Then all kinds of plastics:
 - Nylon (Wallace Carothers, 1935): synthetic silk for parachutes, ropes, stockings...

Organia Electronics

Stephen R. Forrest

- ✓ Polystyrene (BASF, 1930s): cups, insulators, insulation
- $\checkmark~$ Polyethylene, polypropylene, and on and on
- Conjugated polymers for electronics (Heeger, Shirakawa, MacDiarmid, 1977): Doped polyethylene

We are in the age of plastics

- Plastic have changed the look of everything
- Today, 20% of the car itself is plastic
- Global plastics industry: \$1,000,000,000,000 (I guess there is a great • future in plastics!)
- A major source of pollution: Great Pacific Garbage Patch (size of Texas) Organia Electronics

Stephen R. Forrest

And now they are demanded in all electronic appliances

But not all organic electronic materials are polymers

We are in the age of plastics

• Plastics have changed the look of everything

Irganic Electronics Stephen R. Forrest

Plastic Types

- They can be amorphous or polycrystalline or a combination
- Thermoplastics: Can be repeatedly molded due to low glass transition temperature (T_g) – a temperature at which point the material begins to flow
- Thermosets: Can be molded once when heated undergoes a chemical reaction/cross-linking. MW→∞
- Conducting polymers: conjugated backbone

Orgànià Stephen R. orrest